【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).

(1)求該拋物線(xiàn)的解析式;
(2)設(shè)(1)中的拋物線(xiàn)交y軸與C點(diǎn),在該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線(xiàn)上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:將A(1,0),B(﹣3,0)代y=﹣x2+bx+c中得

∴拋物線(xiàn)解析式為:y=﹣x2﹣2x+3


(2)

解:存在

理由如下:由題知A、B兩點(diǎn)關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1對(duì)稱(chēng)

∴直線(xiàn)BC與x=﹣1的交點(diǎn)即為Q點(diǎn),此時(shí)△AQC周長(zhǎng)最小

∵y=﹣x2﹣2x+3

∴C的坐標(biāo)為:(0,3)

直線(xiàn)BC解析式為:y=x+3

Q點(diǎn)坐標(biāo)即為

解得

∴Q(﹣1,2)


(3)

解:存在.

理由如下:設(shè)P點(diǎn)(x,﹣x2﹣2x+3)(﹣3<x<0)

∵SBPC=S四邊形BPCO﹣SBOC=S四邊形BPCO

若S四邊形BPCO有最大值,則SBPC就最大,

∴S四邊形BPCO=SBPE+S直角梯形PEOC

= BEPE+ OE(PE+OC)

= (x+3)(﹣x2﹣2x+3)+ (﹣x)(﹣x2﹣2x+3+3)

=

當(dāng)x=﹣ 時(shí),S四邊形BPCO最大值=

∴SBPC最大=

當(dāng)x=﹣ 時(shí),﹣x2﹣2x+3=

∴點(diǎn)P坐標(biāo)為(﹣


【解析】(1)根據(jù)題意可知,將點(diǎn)A、B代入函數(shù)解析式,列得方程組即可求得b、c的值,求得函數(shù)解析式;(2)根據(jù)題意可知,邊AC的長(zhǎng)是定值,要想△QAC的周長(zhǎng)最小,即是AQ+CQ最小,所以此題的關(guān)鍵是確定點(diǎn)Q的位置,找到點(diǎn)A的對(duì)稱(chēng)點(diǎn)B,求得直線(xiàn)BC的解析式,求得與對(duì)稱(chēng)軸的交點(diǎn)即是所求(3)存在,設(shè)得點(diǎn)P的坐標(biāo),將△BCP的面積表示成二次函數(shù),根據(jù)二次函數(shù)最值的方法即可求得點(diǎn)P的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)原點(diǎn)O的直線(xiàn)AB與反比例函數(shù)(k>0)的圖象交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(﹣2,m),過(guò)點(diǎn)A作AC⊥y軸于點(diǎn)C,OA的垂直平分線(xiàn)DE交OC于點(diǎn)D,交AB于點(diǎn)E.若△ACD的周長(zhǎng)為5,則k的值為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,D為線(xiàn)段BC的中點(diǎn),AB=2AC=2,tan∠CAD=sin∠BAC,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C:y2=4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l.⊙F與C交于A,B兩點(diǎn),與x軸的負(fù)半軸交于點(diǎn)P. (Ⅰ)若⊙F被l所截得的弦長(zhǎng)為 ,求|AB|;
(Ⅱ)判斷直線(xiàn)PA與C的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程或不等式組
(1)用配方法解方程:x2﹣x=3x+5
(2)解不等式組: ,并判斷﹣1, 這兩個(gè)數(shù)是否為該不等式組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,D是斜邊AB上的中點(diǎn),E是邊BC上的點(diǎn),AE與CD交于點(diǎn)F,且AC2=CECB.
(1)求證:AE⊥CD;
(2)連接BF,如果點(diǎn)E是BC中點(diǎn),求證:∠EBF=∠EAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y= 的圖象與正比例函數(shù)y=kx(k≠0)的圖象相交于橫坐標(biāo)為2的點(diǎn)A,平移直線(xiàn)OA,使它經(jīng)過(guò)點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求平移后直線(xiàn)的表達(dá)式;
(2)求∠OBC的余切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是AB邊上一點(diǎn),過(guò)點(diǎn)D作DE∥BC,交AC于E,點(diǎn)F是DE延長(zhǎng)線(xiàn)上一點(diǎn),聯(lián)結(jié)AF.
(1)如果 ,DE=6,求邊BC的長(zhǎng);
(2)如果∠FAE=∠B,F(xiàn)A=6,F(xiàn)E=4,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(4,0),B(3,3),以O(shè)A、AB為邊作OABC,則若一個(gè)反比例函數(shù)的圖象經(jīng)過(guò)C點(diǎn),則這個(gè)反比例函數(shù)的表達(dá)式為

查看答案和解析>>

同步練習(xí)冊(cè)答案