如圖,要建一個(gè)長方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,如果用50m長的籬笆圍成中間有一道籬笆隔墻的養(yǎng)雞場(chǎng),設(shè)它的長度為xm.
(1)要使雞場(chǎng)面積最大,雞場(chǎng)的長度應(yīng)為多少m?
(2)如果中間有n(n是大于1的整數(shù))道籬笆隔墻,要使雞場(chǎng)面積最大,雞場(chǎng)的長應(yīng)為多少m?
比較(1)(2)的結(jié)果,你能得到什么結(jié)論?
(1)依題意得
雞場(chǎng)面積y=x•
50-x
3
=-
1
3
x2+
50
3
x

∵y=-
1
3
x2+
50
3
x=-
1
3
(x2-50x)
=-
1
3
(x-25)2+
625
3

∴當(dāng)x=25時(shí),y最大=
625
3

即雞場(chǎng)的長度為25m時(shí),其面積最大為
625
3
m2

(2)如中間有幾道隔墻,則隔墻長為
50-x
n+2
m
∴y=
50-x
n+2
•x=-
1
n+2
x2+
50
n+2
x
=-
1
n+2
(x2-50x)=-
1
n+2
(x-25)2+
625
n+2

當(dāng)x=25時(shí),y最大=
625
n+2

即雞場(chǎng)的長度為25m時(shí),雞場(chǎng)面積為
625
n+2
m2
結(jié)論:無論雞場(chǎng)中間有多少道籬笆隔墻,要使雞場(chǎng)面積最大,其長都是25m.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

實(shí)踐應(yīng)用:下承式混凝土連續(xù)拱圈梁組合橋,其橋面上有三對(duì)拋物線形拱圈.圖(1)是其中一個(gè)拱圈的實(shí)物照片,據(jù)有關(guān)資料記載此拱圈高AB為10.0m(含拱圈厚度和拉桿長度),橫向分跨CD為40.0m.
(1)試在示意圖(圖(2))中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求出拱圈外沿拋物線的解析式;
(2)在橋面M(BC的中點(diǎn))處裝有一盞路燈(P點(diǎn)),為了保障安全,規(guī)定路燈距拱圈的距離PN不得少于1.1m,試求路燈支柱PM的最低高度.(結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=kx+5與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與拋物線y=ax2+bx交于點(diǎn)C、D.已知點(diǎn)C的坐標(biāo)為(1,7),點(diǎn)D的橫坐標(biāo)為5.
(1)求直線與拋物線的解析式;
(2)將此拋物線沿對(duì)稱軸向下平移幾個(gè)單位,拋物線與直線AB只有一個(gè)交點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=______;
(2)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長;
(3)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
①求此拋物線W的解析式;
②若點(diǎn)Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿足以B,P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=-
3
3
x2+mx+
3
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(-1,0)
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)過A、B、C的三點(diǎn)的⊙M交y軸于另一點(diǎn)D,設(shè)P為弧CBD上的動(dòng)點(diǎn)P(P不與C、D重合),連接AP交y軸于點(diǎn)H,問是否存在一個(gè)常數(shù)k,始終滿足AH•AP=k?如果存在,請(qǐng)求出常數(shù)k;如果不存在,請(qǐng)說明理由;
(3)連接DM并延長交BC于N,交⊙M于點(diǎn)E,過E點(diǎn)的⊙M的切線分別交x軸、y軸于點(diǎn)F、G,試探究BC與FG的位置關(guān)系,并求直線FG的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

兩個(gè)直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點(diǎn)O與E重合.
(1)Rt△AOB固定不動(dòng),Rt△CED沿x軸以每秒2個(gè)單位長度的速度向右運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動(dòng)x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)Rt△CED以(1)中的速度和方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間x=2秒時(shí),Rt△CED運(yùn)動(dòng)到如圖二所示的位置,若拋物線y=
1
4
x2+bx+c過點(diǎn)A,G,求拋物線的解析式;
(3)現(xiàn)有一動(dòng)點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng),試問點(diǎn)P在運(yùn)動(dòng)過程中是否存在點(diǎn)P到x軸或y軸的距離為2的情況?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中∠B=90°,AB=6cm,BC=8cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm∕s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā),經(jīng)幾秒鐘,使△PBQ的面積等于8cm2?在移動(dòng)過程中,△PBQ的最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,4),頂點(diǎn)為(1,
9
2
).
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)D,試在對(duì)稱軸上找出點(diǎn)P,使△CDP為等腰三角形,請(qǐng)直接寫出滿足條件的所有點(diǎn)P的坐標(biāo);
(3)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),分別連接AC、BC,過點(diǎn)E作EFAC交線段BC于點(diǎn)F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時(shí)E點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為Q,拋物線的頂點(diǎn)為P,試求經(jīng)過O、P、Q三點(diǎn)的圓的圓心O′的坐標(biāo);
(3)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C,
①當(dāng)BC=1時(shí),求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)A點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案