兩個直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點O與E重合.
(1)Rt△AOB固定不動,Rt△CED沿x軸以每秒2個單位長度的速度向右運動,當點E運動到與點B重合時停止,設運動x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關系式;
(2)當Rt△CED以(1)中的速度和方向運動,運動時間x=2秒時,Rt△CED運動到如圖二所示的位置,若拋物線y=
1
4
x2+bx+c過點A,G,求拋物線的解析式;
(3)現(xiàn)有一動點P在(2)中的拋物線上運動,試問點P在運動過程中是否存在點P到x軸或y軸的距離為2的情況?若存在,請求出點P的坐標;若不存在,請說明理由.
(1)①由題意知重疊部分是等腰直角三角形,作GH⊥OE.
∴OE=2x,GH=x,
∵y=
1
2
OE•GH=
1
2
•2x•x=x2(0≤x≤3)

(2)A(6,6)
當x=2時,OE=2×2=4.
∴OH=2,HG=2,
∴G(2,2).
6=
1
4
•36+6b+c
2=
1
4
•4+2b+c

X
b=-1
c=3

∴y=
1
4
x2-x+3.

(3)設P(m,n).
當點P到y(tǒng)軸的距離為2時,
有|m|=2,
∴|m|=2.當m=2時,得n=2,
當m=-2時,得n=6.
當點P到x軸的距離為2時,有|n|=2.
∵y=
1
4
x2-x+3
=
1
4
(x-2)2+2>0
∴n=2.當n=2時,得m=2.
綜上所述,符合條件的點P有兩個,分別是P1(2,2),P2(-2,6).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,已知A(5,4),B(10,4):
(1)求點C、D的坐標;
(2)若一次函數(shù)y=kx+3(k≠0)的圖象過C點,求k的值;
(3)在(2)的條件下,①若將直線l:y=kx+3向下平移a個單位,將正方形分為上下兩部分的面積比為7:3,試求出a的值;②若將直線l:y=kx+3平移后與以A為圓心,AC為半徑的圓相切,直接寫出平移后的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與直線y=kx+b交于A(3,0)、C(0,3)兩點,拋物線的頂點坐標為Q(2,-1).點P是該拋物線上一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PDy軸,交直線AC于點D.
(1)求該拋物線的解析式;
(2)設P點的橫坐標為t,PD的長度為l,求l與t之間的函數(shù)關系式,并求l取最大值時,點P的坐標.
(3)在問題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,求拋物線的解析式;
(3)在(2)條件下,點P(不與A、C重合)是拋物線上的一點,點M是y軸上一點,當△BPM是等腰直角三角形時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=-x2+bx+c經(jīng)過直線y=-x+3與坐標軸的兩個交點A、B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)點M為拋物線上的一個動點,求使得△ABM的面積與△ABD的面積相等的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一位籃球運動員跳起投籃,球沿拋物線y=-
1
5
x2+3.5運行,然后準確落入籃框內(nèi).已知籃框的中心離地面的距離為3.05米.
(1)球在空中運行的最大高度為多少米?
(2)如果該運動員跳投時,球出手離地面的高度為2.25米,請問他距離籃框中心的水平距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在一幅長60cm,寬40cm的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整個掛圖的面積是ycm2,設金色紙邊的寬度為xcm2,那么y關于x的函數(shù)是( 。
A.y=(60+2x)(40+2x)B.y=(60+x)(40+x)
C.y=(60+2x)(40+x)D.y=(60+x)(40+2x)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,某地一城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側距地面5米高C、D處各安裝一盞路燈,兩燈間的水平距離CD=8米,
(1)求這個門洞的高度______;
(2)現(xiàn)有體寬均約為0.5水,身高約為1.6米的20名同學想要手挽手成一排橫向通過該城門,請你測算,他們能否通過?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,要建一個長方形養(yǎng)雞場,雞場的一邊靠墻,如果用50m長的籬笆圍成中間有一道籬笆隔墻的養(yǎng)雞場,設它的長度為xm.
(1)要使雞場面積最大,雞場的長度應為多少m?
(2)如果中間有n(n是大于1的整數(shù))道籬笆隔墻,要使雞場面積最大,雞場的長應為多少m?
比較(1)(2)的結果,你能得到什么結論?

查看答案和解析>>

同步練習冊答案