【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為( )
A.100°B.120°C.135°D.150°
【答案】C
【解析】
連接BD,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AD,∠BAD=60°,可證△ABD為等邊三角形,由“SSS”可證△ABE≌△DBE,可得∠ABE=∠DBE=30°,由三角形內(nèi)角和定理即可求解.
解:如圖,連接BD,
∵將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD為等邊三角形,
∴∠ABD=60°,AB=BD,且AE=DE,BE=BE,
∴△ABE≌△DBE(SSS)
∴∠ABE=∠DBE=30°
∴∠ABE=∠DBE=30°,且∠BDE=∠ADB﹣∠ADE=15°,
∴∠BED=135°.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,,點(diǎn)是射線(xiàn)上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.
(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接,與的數(shù)量關(guān)系是 ,與的位置關(guān)系是 ;
(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,
請(qǐng)說(shuō)明理由(選擇圖2,圖3中的一種情況予以證明或說(shuō)理).
(3) 如圖4,當(dāng)點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),連接,若 , ,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】10月期間,我市慶祝新中國(guó)成立70周年“祖國(guó)萬(wàn)歲”的主題燈光秀展示了兩江四岸流光溢彩的壯美之景.周末,小明和小華相約一起乘輕軌去看燈光秀.已知小明家、輕軌站和小華家順次分布在同一條筆直的公路上.小明、小華打算以各自的速度步行到輕軌站,小明出發(fā)3分鐘后,小華從家里出發(fā),走了兩分鐘,小華想起沒(méi)帶相機(jī),立即掉頭以原速的返回家中取相機(jī),并在家中取停留5分鐘,發(fā)現(xiàn)時(shí)間來(lái)不及便立即打車(chē)前住輕軌站,最終比小明早到2分鐘.如圖是兩人之間的距離與小華出發(fā)時(shí)間之間的關(guān)系,則小明家離輕軌站的距離比小華家離輕軌站的距離少_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=x2+(2t﹣2)x+t2﹣2t﹣3與x軸交于A(yíng)、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C.
(1)如圖1,當(dāng)t=0時(shí),連接AC、BC,求△ABC的面積;
(2)如圖2,在(1)的條件下,若點(diǎn)P為在第四象限的拋物線(xiàn)上的一點(diǎn),且∠PCB+∠CAB=135°,求P點(diǎn)坐標(biāo);
(3)如圖3,當(dāng)﹣1<t<3時(shí),若Q是拋物線(xiàn)上A、C之間的一點(diǎn)(不與A、C重合),直線(xiàn)QA、QB分別交y軸于D、E兩點(diǎn).在Q點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+與x軸相交于點(diǎn)B,與y軸相交于點(diǎn)A.
(1)求∠ABO的度數(shù);
(2)過(guò)點(diǎn)A的直線(xiàn)l交x軸的正半軸于點(diǎn)C,且AB=AC,求直線(xiàn)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD.
(1)如圖1,將ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)一定角度得到A1B1C1D,延長(zhǎng)B1C1,分別與BC、AD的延長(zhǎng)線(xiàn)交于點(diǎn)M、N.
①求證:∠BMB1=∠ADA1;
②求證:B1N=AN+C1M;
(2)如圖2,將線(xiàn)段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),使點(diǎn)A的對(duì)應(yīng)點(diǎn)A1落在BC上,將線(xiàn)段CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)到C1D的位置,AC1與A1D交于點(diǎn)H.若H為AC1的中點(diǎn),∠ADC1+∠A1DC=180°,A1B=nA1C,試用含n的式子表示的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)與軸交于、兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線(xiàn)的解析式.
(2)如圖2,直線(xiàn):與軸交于點(diǎn),點(diǎn)是軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸,與拋物線(xiàn)交于點(diǎn),與直線(xiàn)交于點(diǎn),當(dāng)點(diǎn)、、、四個(gè)點(diǎn)組成的四邊形是平行四邊形時(shí),求此時(shí)點(diǎn)坐標(biāo).
(3)如圖3,連接和,點(diǎn)是拋物線(xiàn)上一個(gè)動(dòng)點(diǎn),連接,當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有一露天舞臺(tái),縱斷面如圖所示,AC垂直于地面,AB表示樓梯,AE為舞臺(tái)面,樓梯的坡角∠ABC=45°,坡長(zhǎng)AB=2m,為保障安全,學(xué)校決定對(duì)該樓梯進(jìn)行改造,降低坡度,擬修新樓梯AD,使∠ADC=30°
(1)求舞臺(tái)的高AC(結(jié)果保留根號(hào))
(2)樓梯口B左側(cè)正前方距離舞臺(tái)底部C點(diǎn)3m處的文化墻PM是否要拆除?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)與軸交于點(diǎn).
(1)求點(diǎn)的坐標(biāo)和該拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)若該拋物線(xiàn)與軸交于兩點(diǎn),求的面積;
(3)將該拋物線(xiàn)先向左平移個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度,求平移后的拋物線(xiàn)的解析式(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com