如圖,點A是正比例函數(shù)y=-x與反比例函數(shù)y=
kx
在第二象限的交點,AB⊥OA交x軸于點B,△AOB的面積為4,則k的值是
-4
-4
分析:過點A作AC⊥OB于C,先由正比例函數(shù)的性質(zhì)及AB⊥OA,得出△AOB是等腰直角三角形,根據(jù)等腰三角形三線合一的性質(zhì)得出BC=OC,則S△AOC=
1
2
S△AOB=2,再根據(jù)反比例函數(shù)的性質(zhì)可以得到△AOC的面積等于|k|的一半,由此求解即可.
解答:解:過點A作AC⊥OB于C.
∵點A是正比例函數(shù)y=-x與反比例函數(shù)y=
k
x
在第二象限的交點,AB⊥OA交x軸于點B,
∴△AOB是等腰直角三角形,
∴BC=OC,
∴S△AOC=
1
2
S△AOB=2,即
1
2
|k|=2,
∴k=±4,
∵反比例函數(shù)y=
k
x
的圖象在在第二象限,
∴k<0,
∴k=-4.
故答案為-4.
點評:本題考查反比例系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標作垂線,與坐標軸圍成的矩形面積就等于|k|.該知識點是中考的重要考點,同學們應高度關(guān)注.同時考查了正比例函數(shù)的性質(zhì),等腰三角形的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的精英家教網(wǎng)頂點為M,又正比例函數(shù)y=kx的圖象于二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標;
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)0<k<2時,求四邊形PCMB的面積s的最小值.
【參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為(
x1+x2
2
y1+y2
2
)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致y=
kx
(k≠0)的圖象的一個交點為A(-1,2-k2),另一個交點為B,且A、B關(guān)于原點O對稱,D為OB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的頂點為M,又正比例函數(shù)y=kx的圖象與二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標;
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)值時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)當k為何值時且0<k<2,求四邊形PCMB的面積為
93
16

(參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為(
x1+x2
2
y1+y2
2
)

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的頂點為M,又正比例函數(shù)y=kx的圖象于二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標;
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)0<k<2時,求四邊形PCMB的面積s的最小值.
【參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(遼寧沈陽) 題型:解答題

如圖,已知正比例函數(shù)y = axa≠0)的圖象與反比例函致k≠0)的圖象的一個交點為A(-1,2-k2),另—個交點為B,且A、B關(guān)于原點O對稱,DOB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E

(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;

(2)試計算△COE的面積是△ODE面積的多少倍.

 

查看答案和解析>>

同步練習冊答案