如圖:在直角坐標系中,已知B(b,0),C(0,c),且|b+3|+(2c-8)2=0.
(1)求B、C的坐標;
(2)點A、D是第二象限內的點,點M、N分別是x軸和y軸負半軸上的點,∠ABM=∠CBO,CD∥AB,MC、NB所在直線分別交AB、CD于E、F,若∠MEA=70°,∠CFB=30°.求∠CMB-∠CNB的值;
(3)如圖:AB∥CD,Q是CD上一動點,CP平分∠DCB,BQ與CP交于點P,給出下列兩個結論:①
∠DQB+QBC
∠QPC
的值不變;②
∠DQB+∠QBC
∠QPC
的值改變.其中有且只有一個是正確的,請你找出這個正確的結論并求其定值.
精英家教網精英家教網
分析:(1)根據任何數(shù)的絕對值與平方的值都是非負數(shù),即可得到b+3=2c-8=0,求得b,c的值,得到B,C的坐標;
(2)根據∠CMB=∠MEA-∠ABM,∠CNB=∠GCF-∠CFB,以及平行線的性質即可求證;
(3)值不變,等于2.根據∠DQB+∠QBC=(∠QBC+∠QCB)+∠QBC=2∠QBC+2∠PCB=2(∠QBC+∠PCB)=2∠QPC即可求證.
解答:精英家教網解:(1)由題意得:b+3=2c-8=0,(1分)
∴b=-3,c=4.(2分)
∴B(-3,0),C(0,4).(3分)

(2)∵CD∥AB,
∴∠DCB+∠ABC=180°.
∵∠COB=90°,
∴∠CBO+∠BCO=90°.(4分)
∵(∠GCF+∠DCB+∠BCO)+(∠CBO+∠ABC+∠ABM)
=180°+180°=360°,
∴∠ABM+∠GCF=360°-180°-90°=90°.(5分)
又∵∠CMB=∠MEA-∠ABM=70°-∠ABM
∠CNB=∠GCF-∠CFB=∠GCF-30°(6分)
∴∠CMB-∠CNB=(70°-∠ABM)-(∠GCF-30°)
=100°-(∠ABM+∠GCF)
=100°-90°
=10°.

(3)答:①
∠DQB+∠QBC
∠QPC
的值不變,定值為2.精英家教網
∵CP平分∠DCB,
∴∠QCB=2∠PCB.
又∵∠DQB=∠QBC+∠QCB,
∴∠DQB+∠QBC
=(∠QBC+∠QCB)+∠QBC
=2∠QBC+2∠PCB
=2(∠QBC+∠PCB)
=2∠QPC
∴②
∠DQB+∠QBC
∠QPC
=
2∠QPC
∠QPC
=2.(12分)
點評:①幾何計算題中,如果依據題設和相關的幾何圖形的性質列出方程(或方程組)求解的方法叫做方程的思想;
②求角的度數(shù)常常要用到“三角形的內角和是180°”這一隱含的條件;
③三角形的外角通常情況下是轉化為內角來解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
6
x
的圖象經過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側,作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案