【題目】如圖,直線x軸、y軸分別交于點AB,點C是線段AB上一點,四邊形OADC是菱形,求OD的長.

【答案】4.8.

【解析】分析:由直線AB的解析式利用一次函數(shù)圖象上點的坐標特征可得出點A、B的坐標,進而可得出OA、OB的長度,由OA、OB的長度利用勾股定理可求出AB的長度,根據(jù)菱形的性質(zhì)可得出OEAB、OE=DE,利用面積相等法可求出OE的長度,再根據(jù)OD=2OE即可求出OD的長度.

詳解∵直線y=-x+4x軸、y軸分別交于點A,B,

∴點A(3,0),點B(0,4),

OA=3,OB=4,

AB==5.

∵四邊形OADC是菱形,

OEAB,OE=DE,

OAOB=OEAB,即3×4=5OE,

解得:OE=

OD=2OE=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下面是按照一定規(guī)律畫出的樹形圖,經(jīng)觀察可以發(fā)現(xiàn):圖A2比圖A1多出2樹枝,圖A3比圖A2多出4樹枝,圖A4比圖A3多出8樹枝”,…,照此規(guī)律,圖A6比圖A2多出樹枝”( 。

A. 32 B. 56 C. 60 D. 64

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成3個扇形,分別標有1、2、3三個數(shù)字,小王和小李各轉(zhuǎn)動一次轉(zhuǎn)盤為一次游戲,當每次轉(zhuǎn)盤停止后,指針所指扇形內(nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)(若指針指在分界線時重轉(zhuǎn)).
(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;
(2)求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2﹣3x+2=0的解的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為緩解城市交通壓力,決定修建人行天橋,原設(shè)計天橋的樓梯長AB=6m,∠ABC=45°,后考慮到安全因素,將樓梯腳B移到CB延長線上點D處,使∠ADC=30°(如圖所示).

(結(jié)果保留根號)
(1)求調(diào)整后樓梯AD的長;
(2)求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃每日生產(chǎn)輛自行車,由于人數(shù)和操作原因,每日實際生產(chǎn)量分別為輛、輛、輛、輛、輛、輛、輛.

用正負數(shù)表示每日實際生產(chǎn)量與計劃量的增減情況;

該車廠本周實際共生產(chǎn)多少輛自行車?平均每日實際生產(chǎn)多少輛自行車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】昨天早晨7點,小明乘車從家出發(fā),去西安參加中學生科技創(chuàng)新大賽,賽后,他當天按原路返回,如圖,是小明昨天出行的過程中,他距西安的距離y(千米)與他離家的時間x(時)之間的函數(shù)圖象.

根據(jù)下面圖象,回答下列問題:

(1)求線段AB所表示的函數(shù)關(guān)系式;

(2)已知昨天下午3點時,小明距西安112千米,求他何時到家?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為4,將此正方形置于平面直角坐標系中,使AB邊落在X軸的正半軸上,且A點的坐標是(1,0).

(1)直線經(jīng)過點C,且與x軸交與點E,求四邊形AECD的面積;

(2)若直線l經(jīng)過點E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;

(3)若直線l1經(jīng)過點F(﹣,0),且與直線y=3x平行,將(2)中直線l沿著y軸向上平移個單位交軸x于點M,交直線l1于點N,求NMF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E,F(xiàn)分別在AB、CD上,AE=CF ,且DF=BF; 求證:四邊形DEBF為菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)1小時后到達南亞所(景點),游玩一段時間后按原速前往湖光巖.小明離家1小時50分鐘,媽媽駕車沿相同路線前往湖光巖,如圖是他們離家的路程ykm)與小明離家時間xh)的函數(shù)圖象.

1)求小明騎車的速度和在南亞所游玩的時間;

2)若媽媽在出發(fā)后25分鐘時,剛好在湖光巖門口追上小明,求媽媽駕車的速度及CD所在直線的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案