【題目】如圖,在正方形ABCD中,E是BC邊上一點(diǎn),連接AE,延長(zhǎng)CB至點(diǎn)F,使,過點(diǎn)F作于點(diǎn)H,射線FH分別交AB、CD于點(diǎn)M、N,交對(duì)角線AC于點(diǎn)P,連接AF.
依題意補(bǔ)全圖形;
求證:;
判斷線段FM與PN的數(shù)量關(guān)系,并加以證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是 ;
(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售部有營(yíng)銷員15人,銷售部為了制定關(guān)于某種商品的每位營(yíng)銷員的個(gè)人月銷售定額,統(tǒng)計(jì)了這15人某月關(guān)于此商品的個(gè)人月銷售量(單位:件)如下:
個(gè)人月銷售量 | 1800 | 510 | 250 | 210 | 150 | 120 |
營(yíng)銷員人數(shù) | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求這15位營(yíng)銷員該月關(guān)于此商品的個(gè)人月銷售量的平均數(shù),并直接寫出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)假設(shè)該銷售部負(fù)責(zé)人把每位營(yíng)銷員關(guān)于此商品的個(gè)人月銷售定額確定為320件,你認(rèn)為對(duì)多數(shù)營(yíng)銷員是否合理?并在(1)的基礎(chǔ)上說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出一個(gè)問題“用直尺和圓規(guī)作一個(gè)矩形”.
小華的做法如下:
如圖1,任取一點(diǎn)O,過點(diǎn)O作直線l1,l2;如圖2,以O為圓心,任意長(zhǎng)為半徑作圓,與直線l1,l2分別相交于點(diǎn)A、C,B、D;如圖3,連接AB、BC、CD、DA四邊形ABCD即為所求作的矩形.
老師說:“小華的作法正確”.
請(qǐng)回答:小華的作圖依據(jù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是半圓弧上一動(dòng)點(diǎn),連接PA、PB,過圓心O作交PA于點(diǎn)C,連接已知,設(shè)O,C兩點(diǎn)間的距離為xcm,B,C兩點(diǎn)間的距離為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小東的探究過程,請(qǐng)補(bǔ)充完整:
通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù)
建立直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
結(jié)合畫出的函數(shù)圖象,解決問題:直接寫出周長(zhǎng)C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)C,過點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答問題:
小聰學(xué)完了“銳角三角函數(shù)”的相關(guān)知識(shí)后,通過研究發(fā)現(xiàn):如圖1,在Rt△ABC中,如果∠C=90°,∠=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通過上網(wǎng)查閱資料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在著==的關(guān)系.
這個(gè)關(guān)系對(duì)于一般三角形還適用嗎?為此他做了如下的探究:
(1)如圖2,在R△ABC中,∠C=90°,BC=a,AC=b,AB=C,請(qǐng)判斷此時(shí)“==”的關(guān)系是否成立?答:
(2)完成上述探究后,他又想“對(duì)于任意的銳角△ABC,上述關(guān)系還成立嗎?”因此他又繼續(xù)進(jìn)行了如下的探究:
如圖3,在銳角△ABC中,BC=a,AC=b,AB=c,請(qǐng)判斷此時(shí)“ ==”的關(guān)系是否成立?并證明你的判斷.(提示:過點(diǎn)C作CD⊥AB于D,過點(diǎn)A作AH⊥BC,再結(jié)合定義或其它方法證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接PQ,以PQ為直徑作⊙O.
(1)當(dāng)時(shí),求△PCQ的面積;
(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),⊙O與Rt△ABC的一邊相切,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com