【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接PQ,以PQ為直徑作⊙O.
(1)當(dāng)時(shí),求△PCQ的面積;
(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),⊙O與Rt△ABC的一邊相切,求t的值.
【答案】(1);(2)①;②;(3)t的值為或1或.
【解析】
(1)先根據(jù)t的值計(jì)算CQ和CP的長(zhǎng),由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結(jié)論;
(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動(dòng)時(shí),②當(dāng)Q在邊AB上運(yùn)動(dòng)時(shí);分別根據(jù)勾股定理計(jì)算PQ2,最后利用圓的面積公式可得S與t的關(guān)系式;
(3)分別當(dāng)⊙O與BC相切時(shí)、當(dāng)⊙O與AB相切時(shí),當(dāng)⊙O與AC相切時(shí)三種情況分類討論即可確定答案.
(1)當(dāng)t=時(shí),CQ=4t=4×=2,即此時(shí)Q與A重合,
CP=t=,
∵∠ACB=90°,
∴S△PCQ=CQPC=×2×=;
(2)分兩種情況:
①當(dāng)Q在邊AC上運(yùn)動(dòng)時(shí),0<t≤2,如圖1,
由題意得:CQ=4t,CP=t,
由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
∴S=π=;
②當(dāng)Q在邊AB上運(yùn)動(dòng)時(shí),2<t<4如圖2,
設(shè)⊙O與AB的另一個(gè)交點(diǎn)為D,連接PD,
∵CP=t,AC+AQ=4t,
∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
∵PQ為⊙O的直徑,
∴∠PDQ=90°,
Rt△ACB中,AC=2cm,AB=4cm,
∴∠B=30°,
Rt△PDB中,PD=PB=,
∴BD=,
∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
∴PQ==,
∴S=π==;
(3)分三種情況:
①當(dāng)⊙O與AC相切時(shí),如圖3,設(shè)切點(diǎn)為E,連接OE,過(guò)Q作QF⊥AC于F,
∴OE⊥AC,
∵AQ=4t﹣2,
Rt△AFQ中,∠AQF=30°,
∴AF=2t﹣1,
∴FQ=(2t﹣1),
∵FQ∥OE∥PC,OQ=OP,
∴EF=CE,
∴FQ+PC=2OE=PQ,
∴(2t﹣1)+t=,
解得:t=或﹣(舍);
②當(dāng)⊙O與BC相切時(shí),如圖4,
此時(shí)PQ⊥BC,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=1;
③當(dāng)⊙O與BA相切時(shí),如圖5,
此時(shí)PQ⊥BA,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=,
綜上所述,t的值為或1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上一點(diǎn),連接AE,延長(zhǎng)CB至點(diǎn)F,使,過(guò)點(diǎn)F作于點(diǎn)H,射線FH分別交AB、CD于點(diǎn)M、N,交對(duì)角線AC于點(diǎn)P,連接AF.
依題意補(bǔ)全圖形;
求證:;
判斷線段FM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜坡AF的坡度為5:12,斜坡AF上一棵與水平面垂直的大樹BD在陽(yáng)光照射下,在斜坡上的影長(zhǎng)BC=6.5米,此時(shí)光線與水平線恰好成30°角,求大樹BD的高.(結(jié)果精確的0.1米,參考數(shù)據(jù)≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長(zhǎng)和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD中,G為BC中點(diǎn),點(diǎn)E在AD邊上,且∠1=∠2.
(1)求證:E是AD中點(diǎn);
(2)若F為CD延長(zhǎng)線上一點(diǎn),連接BF,且滿足∠3=∠2,求證:CD=BF+DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一,下列圖表中的數(shù)據(jù)是運(yùn)動(dòng)員甲、乙、丙三人每人10次墊球測(cè)試的成績(jī),測(cè)試規(guī)則為每次連續(xù)接球10個(gè),每墊球到位1個(gè)記1分,已知運(yùn)動(dòng)員甲測(cè)試成績(jī)的中位數(shù)和眾數(shù)都是7.
運(yùn)動(dòng)員甲測(cè)試成績(jī)統(tǒng)計(jì)表
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 6 | 8 | 6 | 8 |
(1)填空:______;______.
(2)要從他們?nèi)酥羞x擇一位墊球較為穩(wěn)定的接球能手,你認(rèn)為選誰(shuí)更合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鼎豐超市以固定進(jìn)價(jià)一次性購(gòu)進(jìn)保溫杯若干個(gè),11月份按一定售價(jià)銷售,銷售額為1800元,為擴(kuò)大銷量,減少庫(kù)存,12月份在11月份售價(jià)基礎(chǔ)上打9折銷售,結(jié)果銷售量增加50個(gè),銷售額增加630元.
(1)求鼎豐超市11月份這種保溫杯的售價(jià)是多少元?
(2)如果鼎豐超市11月份銷售這種保溫杯的利潤(rùn)為600元,那么該鼎豐超市12月份銷售這種保溫杯的利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是.
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫出關(guān)于軸對(duì)稱的;
(3)請(qǐng)?jiān)?/span>軸上求作一點(diǎn),使的周長(zhǎng)最小,并寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線平行于軸并交軸于,一塊三角板擺放其中,其邊與軸分別交于,兩點(diǎn),與直線分別交于,兩點(diǎn),
(1)將三角板如圖1所示的位置擺放,請(qǐng)寫出與之間的數(shù)量關(guān)系,并說(shuō)明理由.
(2)將三角板按如圖2所示的位置擺放,為上一點(diǎn),,請(qǐng)寫出與之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com