【題目】如圖,在四邊形ABCD中,∠BCD100°,∠B60o,連接AC,BCACAB,且△ABC≌△ADC,CE、CF分別是∠ACB與∠ACD的平分線,分別交AB、ADE、F兩點(diǎn).

(1)分別求∠BAD和∠AEC的度數(shù).

(2)請寫出圖中所有相等的線段.

【答案】(1)BAD=140°,∠AEC=85°;(2)ABAD,BCCDCECF,AEAF,BEDF.

【解析】

(1)根據(jù)全等三角形的性質(zhì)得出∠BAC=∠DAC,∠ACB=∠ACD,求出∠ACB=∠ACDBCD50°,再根據(jù)三角形內(nèi)角和定理求出∠BAC,然后根據(jù)角平分線的定義求出∠ACE的度數(shù),即可求出∠AEC;

(2)根據(jù)全等三角形的性質(zhì)得出即可.

解:(1)∵△ABC≌△ADC,

∴∠BAC=∠DAC,∠ACB=∠ACD,

又∵∠BCD100°,

∴∠ACB=∠ACDBCD50°

又∵∠B60o,

∴∠BAC180°60o50o70o,

∴∠BAD140°,

又∵CE是∠ACB的角平分線,

∴∠ACEACB25°,

∴∠AEC180°25°70°85°

(2)CE、CF分別是∠ACB與∠ACD的平分線,∠ACB=∠ACD,∴∠ACE=∠ACF,

∵∠BACDAC,AC=ACACEACF(ASA),∴AE=AF,CE=CF,

所以相等的線段有:ABADBCDC,CECF,AEAFBEDF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個不同的實(shí)根;其中正確的結(jié)論個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,每個最小方格的邊長均為1個單位長度,P1P2,P3,均在格點(diǎn)上,其順序按圖中“→”方向排列,如:P1(0,0),P2(01),P3(1,1)P4(1,-1),P5(1,-1)P6(1,2),,根據(jù)這個規(guī)律,點(diǎn)P2 019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b),且a、b滿足|b6|0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著OCBAO的線路移動.

1a______________,b_____________,點(diǎn)B的坐標(biāo)為_______________

2)當(dāng)點(diǎn)P移動4秒時,請指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo);

3)在移動過程中,當(dāng)點(diǎn)Px軸的距離為5個單位長度時,求點(diǎn)P移動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知點(diǎn)A(1,a是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、DB(3,﹣1),

(1)求反比例函數(shù)的解析式

(2)求點(diǎn)D坐標(biāo),并直接寫出y1y2x的取值范圍;

(3)動點(diǎn)Px,0)x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,﹣2),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(3,0),B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個動點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過點(diǎn)P且垂直于x軸的直線與這個二次函數(shù)的圖象交于點(diǎn)E.

(1)求這個二次函數(shù)的解析式;

(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求線段PE的長(用含x 的代數(shù)式表示);

(3)點(diǎn)D為直線AB與這個二次函數(shù)圖象對稱軸的交點(diǎn),若以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似,請求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與ABC關(guān)于x軸對稱的A1B1C1,并寫出A1、B1、C1的坐標(biāo);

(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出A2B2C2,使

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:甲乙兩車分別從相距300千米的A、B兩地同時出發(fā)相向而行,其中甲到達(dá)B地后立即返回,如圖是甲乙兩車離A地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象

(1)求甲車離A地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)若它們出發(fā)第5小時時,離各自出發(fā)地的距離相等,求乙車離A地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地長途汽車站規(guī)定前來乘車的旅客可以免費(fèi)隨身攜帶一定質(zhì)量的行李,如果行李質(zhì)量超過規(guī)定,則應(yīng)交納行李費(fèi),行李費(fèi)用y(元)與行李質(zhì)量x(千克)之間的關(guān)系可以用如圖所示的圖象表示,請觀察圖象回答下列問題:

1)旅客最多能免費(fèi)攜帶多少千克的行李?

2)求行李費(fèi)用y(元)與行李質(zhì)量x(千克)之間的函數(shù)關(guān)系式;

3)一位旅客隨身攜帶了60千克的行李,他應(yīng)交納行李費(fèi)多少元?

4)另一位旅客交納了120元行李費(fèi),他攜帶的行李重多少千克?

查看答案和解析>>

同步練習(xí)冊答案