【題目】如圖,點(diǎn)A是雙曲線y=﹣在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y上運(yùn)動(dòng),則k的值為_____

【答案】3

【解析】

連接CO,過點(diǎn)AAD⊥x軸于點(diǎn)D,過點(diǎn)CCE⊥x軸于點(diǎn)E,

∵連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,

∴CO⊥AB,∠CAB=30°,

則∠AOD+∠COE=90°,

∵∠DAO+∠AOD=90°,

∴∠DAO=∠COE,

又∵∠ADO=∠CEO=90°,

∴△AOD∽△OCE,

=tan60°=

= =3,

∵點(diǎn)A是雙曲線y=- 在第二象限分支上的一個(gè)動(dòng)點(diǎn),

∴S△AOD=×|xy|= ,

∴S△EOC= ,即×OE×CE=,

∴k=OE×CE=3,

故答案為:3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20199月,在鄭州舉行的第十一屆全國(guó)少數(shù)民族運(yùn)動(dòng)會(huì)的龍舟比賽中,甲、乙兩隊(duì)在米的賽道上,所劃行的路程與時(shí)間之間的函數(shù)關(guān)系式如圖所示,下列說法錯(cuò)誤的是(

A.乙隊(duì)比甲隊(duì)提前到達(dá)終點(diǎn)

B.當(dāng)乙隊(duì)劃行時(shí),此時(shí)落后甲隊(duì)

C.后,乙隊(duì)比甲隊(duì)每分鐘快

D.開始,甲隊(duì)若要與乙隊(duì)同時(shí)到達(dá)終點(diǎn),甲隊(duì)的速度需提高到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解初中階段女生身高情況,從某中學(xué)初二年級(jí)120名女生中隨意抽出40名同齡女生的身高數(shù)據(jù),經(jīng)過分組整理后的頻數(shù)分布表及頻數(shù)分布直方圖如圖所示:

結(jié)合以上信息,回答問題:

1a=______b=______,c=______

2)請(qǐng)你補(bǔ)全頻數(shù)分布直方圖.

3)試估計(jì)該年級(jí)女同學(xué)中身高在160165cm的同學(xué)約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批乒乓球的質(zhì)量檢驗(yàn)結(jié)果如下:

抽取的乒乓球數(shù)n

200

500

1000

1500

2000

優(yōu)等品頻數(shù)m

188

471

946

1426

1898

優(yōu)等品頻率

0.940

0.942

0.946

0.951

0.949

(1)畫出這批乒乓球優(yōu)等品頻率的折線統(tǒng)計(jì)圖;

(2)這批乒乓球優(yōu)等品的概率的估計(jì)值是多少?

(3)從這批乒乓球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除顏色外都相同,將它們放入一個(gè)不透明的袋中.

求從袋中摸出一個(gè)球是黃球的概率;

現(xiàn)從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個(gè)是黃球的概率不小于, 問至少取出了多少個(gè)黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:一輛汽車在一個(gè)十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時(shí)汽車車頭與斑馬線的距離x是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點(diǎn)B,連接PA交⊙O于點(diǎn)C,連接BC

(1)求證:∠BAC=CBP;

(2)求證:PB2=PCPA;

(3)當(dāng)AC=6,CP=3時(shí),求sinPAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C,D兩點(diǎn).點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn).

(1)求此拋物線的解析式;

(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo);

(3)拋物線上是否存在一點(diǎn)Q(QB不重合),使CDQ的面積等于BCD的面積?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案