【題目】如圖,一次函數(shù)y= -3x+6的圖象與軸、軸分別交于、兩點.
(1)將直線向左平移1個單位長度,求平移后直線的函數(shù)關(guān)系式;
(2)求出平移過程中,直線在第一象限掃過的圖形的面積.
【答案】(1)y= -3x+3;(2).
【解析】
(1)根據(jù)平移的性質(zhì)“左加右減”,將x換成x+1整理后即可得出結(jié)論;
(2)根據(jù)三角形的面積公式直接求出掃過的面積即可得出結(jié)論.
(1)根據(jù)平移規(guī)律可得平移后的直線的解析式為:
y= -3(x+1)+6= -3x-3+6= -3x+3;
(2)對于一次函數(shù)y= -3x+6,當x=0時,y=6,所以B(0,6),
令y=0,即-3x+6=0,解得x=2.所以A(2,0)
同理可得直線y= -3x+3與x軸的交點C(1,0),與y軸的交點D(0,3)
因此直線AB在第一象限掃過的圖形的面積為:
S=OA×OB-OC×OD=×2×6-×1×3=.
科目:初中數(shù)學 來源: 題型:
【題目】小琳同學學習了《太陽光與影子》這一節(jié)以后,就想利用樹影測量樹高,但這棵樹離大樓太近,影子不全落在地上,有一部分影子落在墻上(如圖),她在某時刻測得留在墻上的影長為1.2 m,測得地面上的影長為2.7 m,巧的是她拿的竹竿的長也是1.2 m,竹竿的影長為1.08 m,她是怎樣求得樹高AB的?結(jié)果是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于點D,過點D作DE⊥AB,垂足為E.
(1)求證:AC=AE;
(2)若△BDE的周長為20,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過矩形ABCD的對角線BD上一點K分別作矩形兩邊的平行線MN與PQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關(guān)系是S1_____S2;(填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鄰居張老漢養(yǎng)了一群雞,現(xiàn)在要建一長方形雞場,雞場的一邊靠墻(墻長18米),墻對面有一個2米寬的門,另三邊(門除外)用竹籬笆圍成,籬笆總長34米.請同學解決以下問題:
(1)若設雞場的面積為y平方米,雞場與墻平行的一邊長為x米,請寫出y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)當雞場的面積為160平方米時,雞場的長與寬分別是多少米?
(3)雞場的最大面積是多少?并求出此時雞場的長與寬分別是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三個頂點的坐標分別為、、.
(1)若與關(guān)于y軸成軸對稱,則三個頂點坐標分別為_________,____________,____________;
(2)若P為x軸上一點,則的最小值為____________;
(3)計算的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標;
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形是面積為的平行四邊形,其中.
(1)如圖①,點為邊上任意一點,則的面積和的面積之和與的面積之間的數(shù)量關(guān)系是__________;
(2)如圖②,設交于點,則的面積和的面積之和與的面積之間的數(shù)量關(guān)系是___________;
(3)如圖③,點為內(nèi)任意一點時,試猜想的面積和的面積之和與的面積之間的數(shù)量關(guān)系,并加以證明;
(4)如圖④,已知點為內(nèi)任意一點,的面積為,的面積為,連接,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com