【題目】如圖,線段的垂直平分線交于點,且,,則的度數(shù)為 ________

【答案】

【解析】

連接CE,由線段的垂直平分線交于點,得CA=CB,CE=CD,ACB=ECD=36°,進而得∠ACE=BCD,易證ACEBCD,設∠AEC=BDC=x,得則∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根據(jù)三角形內(nèi)角和定理,即可得到答案.

連接CE

∵線段的垂直平分線交于點,

CA=CB,CE=CD

=DEC,

∴∠ACB=ECD=36°,

∴∠ACE=BCD

ACEBCD中,

,

ACEBCDSAS),

∴∠AEC=BDC,

設∠AEC=BDC=x,則∠BDE=72°-x,∠CEB=92°-x,

∴∠BED=DEC-CEB=72°-92°-x=x-20°,

∴在BDE中,∠EBD=180°-72°-x-x-20°)=128°.

故答案是:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1.0,1.21,1.44,正放置的四個正方形的面積為S1S2、S3、S4,則S1+S2+S3+S4=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場出售一批進價為2元的賀卡,在營運中發(fā)現(xiàn)此商品的日銷價x(單位:元)與銷售量y(單位:張)之間有如下關系:

x/元

3

4

5

6

y/張

20

15

12

10

(1)猜測并確定y與x的函數(shù)關系式.

(2)當日銷售單價為10元時,賀卡的日銷售量是多少張?

(3)設此卡的利潤為W元,試求出W與x之間的函數(shù)關系式,若物價部門規(guī)定此卡的銷售單價不能超過10元,試求出當日銷售單價為多少元時,每天獲得的利潤最大并求出最大的利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料,完成(1-3)題:數(shù)學課上,老師出示了這樣一道題:如圖1,點是正上一點以為邊做正,連接.探究線段的數(shù)量關系,并證明.同學們經(jīng)過思考后,交流了自已的想法:

小明:通過觀察和度量,發(fā)現(xiàn)相等.”

小偉:通過全等三角形證明,再經(jīng)過進一步推理,可以得到線段平分.”......

老師:保留原題條件,連接,的延長線上一點,(如圖2),如果,可以求出、三條線段之間的數(shù)量關系.”

1)求證;

2)求證線段平分;

3)探究、三條線段之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC

(2) 請畫出ABC關于原點對稱的ABC;

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y= -3x+6的圖象與軸、軸分別交于、兩點.

1)將直線向左平移1個單位長度,求平移后直線的函數(shù)關系式;

2)求出平移過程中,直線在第一象限掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點坐標是(8,6).

(1)求二次函數(shù)的解析式;

(2)求函數(shù)圖象的頂點坐標及D點的坐標;

(3)二次函數(shù)的對稱軸上是否存在一點C,使得CBD的周長最。咳鬋點存在,求出C點的坐標;若C點不存在,請說明理由.

查看答案和解析>>

同步練習冊答案