【題目】某學(xué)習(xí)小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是( 。

A. 袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機(jī)取一個,取到紅球

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)

C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面

D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9

【答案】D

【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.

A、袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機(jī)取一個,取到紅球的概率為,不符合題意;

B、擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;

C、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;

D、先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點CCF平行于BAPQ于點F,連接AF

(1)求證:AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在4×8的網(wǎng)格紙中,每個小正方形的邊長都為1,動點P、Q分別從點D、A同時出發(fā)向右移動,點P的運動速度為每秒2個單位,點Q的運動速度為每秒1個單位,當(dāng)點P運動到點C時,兩個點都停止運動,設(shè)運動時間為t0t4).

1)請在4×8的網(wǎng)格紙圖①中畫出t3秒時的線段PQ.并求其長度;

2)若MBC的中點,PQM的面積為S,請用含有t的代數(shù)式來表示S;

3)當(dāng)t為多少時,△PQB是以PQ為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一塊三角形的土地要分給甲、乙、丙三家農(nóng)戶. 如圖,如果∠A=90°,∠B=30°.

1)這三家農(nóng)戶所得土地的大小、形狀都相同,請你在圖中試著分一分,并簡潔說明你的理由.

2)要使這三家農(nóng)戶所得土地是面積相等的三角形,且有一個公共頂點,請你在備用圖中試著分一分,并簡潔說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地是一個降水豐富的地區(qū),今年4月初,由于連續(xù)降雨導(dǎo)致該地某水庫水位持續(xù)上漲,經(jīng)觀測水庫1日—4日的水位變化情況,發(fā)現(xiàn)有這樣規(guī)律, 1日,水庫水位為米,此后日期每增加一天,水庫水位就上漲米。

(1)請求出該水庫水位(米)與日期(日)之間的函數(shù)表達(dá)式;(注:4月1日,即,4月2日,即,…,以次類推)

(2)請用求出的函數(shù)表達(dá)式預(yù)測該水庫今年4月6日的水位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場進(jìn)行有獎促銷活動,規(guī)定顧客購物達(dá)到一定金額就可以獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會(如圖),當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時指針落在哪一區(qū)域就可獲得相應(yīng)的獎品(若指針落在兩個區(qū)域的交界處,則重新轉(zhuǎn)動轉(zhuǎn)盤).

轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在“10元兌換券的次數(shù)m

68

111

136

345

564

701

落在“10元兌換券的頻率

0.68

a

0.68

0.69

b

0.701

(1)a的值為   ,b的值為   ;

(2)假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,獲得“10元兌換券的概率約是   ;(結(jié)果精確到0.01)

(3)根據(jù)(2)的結(jié)果,在該轉(zhuǎn)盤中表示“20元兌換券區(qū)域的扇形的圓心角大約是多少度?(結(jié)果精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】題目:如圖①,在四邊形ABCD中,ABAD,∠ABC=∠ADC,那么BCCD嗎?請說明理由.

小明的作法如下:

如圖②,連結(jié)AC.

ABAD,∠ABC=∠ADC,ACAC.

ABC≌△ADC.

BCCD.

1)小明的作法錯誤的原因是 .

2)請正確解答這道題目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班同學(xué)上數(shù)學(xué)活動課,利用角尺平分一個角(如圖).設(shè)計了如下方案:

(Ⅰ)∠AOB是一個任意角,將角尺的直角頂點P介于射線OA,OB之間,移動角尺使角尺兩邊相同的刻度與M,N重合,PM=PN,過角尺頂點P的射線OP就是∠AOB的平分線.

(Ⅱ)∠AOB是一個任意角,在邊OA,OB上分別取OM=ON,將角尺的直角頂點P介于射線OA,OB之間,移動角尺使角尺兩邊相同的刻度與M,N重合,PM=PN,過角尺頂點P的射線OP就是∠AOB的平分線.

(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,請證明;若不可行,請說明理由.

(2)在方案(Ⅰ)PM=PN的情況下,繼續(xù)移動角尺,同時使PM⊥OA,PN⊥OB.此方案是否可行?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E,.

(1)求證:OA=OB;

(2)已知AB=4,OA=4,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案