【題目】如圖,在△ABC中,∠A90°,AB3AC4,點M,Q分別是邊AB,BC上的動點(點M不與AB重合),且MQBC,過點MBC的平行線MN,交AC于點N,連接NQ,設(shè)BQx

1)試說明不論x為何值時,總有△QBM∽△ABC

2)是否存在一點Q,使得四邊形BMNQ為平行四邊形,試說明理由;

3)當(dāng)x為何值時,四邊形BMNQ的面積最大,并求出最大值.

【答案】1)證明見解析;(2)當(dāng)BQ=MN時,四邊形BMNQ為平行四邊形,證明見解析;(3)當(dāng)x=時,四邊形BMNQ的面積最大,最大值為

【解析】

1)根據(jù)題意得到∠MQB=CAB,根據(jù)相似三角形的判定定理證明;

2)根據(jù)對邊平行且相等的四邊形是平行四邊形解答;

3)根據(jù)勾股定理求出BC,根據(jù)相似三角形的性質(zhì)用x表示出QM、BM,根據(jù)梯形面積公式列出二次函數(shù)解析式,根據(jù)二次函數(shù)性質(zhì)計算即可.

1)∵MQBC,

∴∠MQB=90°,

∴∠MQB=CAB,又∠QBM=ABC

∴△QBM∽△ABC;

2)當(dāng)BQ=MN時,四邊形BMNQ為平行四邊形,

設(shè)AM=3a,則MN=5a,

BQ=MN=5a,

MNBQ,

∴∠NMQ=MQB=90°,

∴∠AMN+BMQ=90°,又∠B+BMQ=90°,

∴∠B=AMN,又∠MQB=A=90°,

∴△MBQ∽△NMA,

,即,

解得,a=,

BQ=

MNBQ,BQ=MN=,

∴四邊形BMNQ為平行四邊形;

3)∵∠A=90°AB=3,AC=4

BC==5,

∵△QBM∽△ABC

,即,

解得,QM=x,BM=x,

MNBC,

,即,

解得,MN=5-x,

則四邊形BMNQ的面積=

=

∴當(dāng)x=時,四邊形BMNQ的面積最大,最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 y 軸交于點 C0,4),與 x 軸交于點 AB,點 A 的坐標(biāo)為(4,0).

1)求此拋物線的解析式;

2)點 Q 是線段 AB 上的動點,過點 Q QEAC,交 BC 于點 E,連接 CQ,當(dāng)CQE 的面積最大時,求點 Q的坐標(biāo);

3)當(dāng)點 Q 從點 B 出發(fā)沿著 BA 方向以每秒 2 個單位長向點 A 運(yùn)動,同時點 P 從點 A 出發(fā)沿著 AC 方向以每秒 個單位長度向點 C 運(yùn)動,其中一個點到達(dá)終點,另一個點也停止運(yùn)動,設(shè) P、Q 運(yùn)動時間為 t 秒,當(dāng) t 為何值?APQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°BE平分∠ABCAC于點D,交△ABC的外接圓于點E,過點EEFBCBC的延長線于點F.請補(bǔ)全圖形后完成下面的問題:

1)求證:EF是△ABC外接圓的切線;

2)若BC=5sinABC=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點A,與y軸交點C,拋物線AC兩點,與x軸交于另一點B

1)求拋物線的解析式.

2)在直線AC上方的拋物線上有一動點E,連接BE,與直線AC相交于點F,當(dāng)時,求的值.

3)點N是拋物線對稱軸上一點,在(2)的條件下,若點E位于對稱軸左側(cè),在拋物線上是否存在一點M,使以M,N,EB為頂點的四邊形是平行四邊形?若存在,直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宣和中學(xué)圖書館今日購進(jìn)甲、乙兩種圖書,每本甲種圖書的進(jìn)價比每本乙種圖書的進(jìn)價高20元,花780元購進(jìn)甲種圖書的數(shù)量與花540元購進(jìn)乙種圖書的數(shù)量相同.

1)求甲、乙兩種圖書每本的進(jìn)價分別是多少元;

2)宣和中學(xué)購進(jìn)甲、乙兩種圖書共70本,總購書費(fèi)用不超過3950元,則最多購進(jìn)甲種圖書多少本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C、D為O上的兩點,BAC=DAC,過點C做直線EFAD,交AD的延長線于點E,連接BC.

(1)求證:EF是O的切線;

(2)若DE=1,BC=2,求劣弧的長l.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生開展為貧困山區(qū)孩子捐書活動,要求捐贈的書籍類別為科普類、文學(xué)類、漫畫類、哲學(xué)故事類、環(huán)保類,學(xué)校圖書管理員對所捐贈的書籍隨機(jī)抽查了部分進(jìn)行統(tǒng)計,并對獲取的數(shù)據(jù)進(jìn)行了整理,根據(jù)整理結(jié)果,繪制了如圖所示的兩幅不完整的統(tǒng)計圖.已知所統(tǒng)計的數(shù)據(jù)中,捐贈的哲學(xué)故事類書籍和文學(xué)類書籍的數(shù)量相同.請根據(jù)以上信息,解答下列問題:

1)本次被抽查的書籍有_____冊.

2)補(bǔ)全條形統(tǒng)計圖.

3)若此次捐贈的書籍共1200冊,請你估計所捐贈的科普類書籍有多少冊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,正方形ABCD的邊長為4,動點E從點A出發(fā),以每秒2個單位的速度沿ADA連續(xù)做往返運(yùn)動;動點G從點A出發(fā),以每秒1個單位的速度沿AB方向運(yùn)動.E、G兩點同時出發(fā),當(dāng)點G到達(dá)點B時停止運(yùn)動,點E也隨之停止.過點GFGABAC于點F,以FG為一直角邊向右作等腰直角三角形FGH,使∠FGH90°.設(shè)點G的運(yùn)動時間為t(秒),FGH與正方形ABCD重疊部分圖形的周長為l

1)當(dāng)t1時,l   

2)當(dāng)t3時,求l的值.

3)設(shè)DEy,在圖②的坐標(biāo)系中,畫出yt的函數(shù)圖象.

4)當(dāng)四邊形DEGF是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市某中學(xué)為了豐富校園文化生活.校學(xué)生會決定舉辦演講、歌唱、繪畫、舞蹈四項比賽,要求每位學(xué)生都參加.且只能參加一項比賽.圍繞你參賽的項目是什么?(只寫一項)”的問題,校學(xué)生會在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查。將調(diào)查問卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為13.請你根據(jù)以上信息回答下列問題:

(1)通過計算補(bǔ)全條形統(tǒng)計圖;

(2)在這次調(diào)查中,一共抽取了多少名學(xué)生?

(3)如果全校有680名學(xué)生,請你估計這680名學(xué)生中參加演講比賽的學(xué)生有多少名?

查看答案和解析>>

同步練習(xí)冊答案