【題目】(1)如圖,邊長為a、b的矩形,它的周長為14,面積為10,求a2b+3a3b3+ab2的值;
(2)已知a+b=8,ab=16+c2,求(a﹣b+c)2018的值.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=45°,AB=AC,點D為BC中點,直角∠MDN繞點D旋轉,DM、DN分別與邊AB、AC交于E、F兩點,下列結論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結論是( )
A. ①②④ B. ②③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+3經過點A,B,C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸的平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,在(2)的條件下,延長DP交x軸于點F,M(m,0)是x軸上一動點,N 是線段DF上一點,當△BDC的面積最大時,若∠MNC=90°,請直接寫出實數m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AB=AC=4,AD⊥BC,BD=2,延長AD到E,使AE=2AD,連接BE.
(1)求證:△ABE為等邊三角形;
(2)將一塊含60°角的直角三角板PMN如圖放置,其中點P與點E重合,且∠NEM=60°,邊NE與AB交于點G,邊ME與AC交于點F.求證:BG=AF;
(3)在(2)的條件下,求四邊形AGEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,OC平分∠AOB,且∠AOB=60°,點P為OC上任意點,PM⊥OA于M,PD∥OA,交OB于D,若OM=3,則PD的長為( )
A.2B.1.5C.3D.2.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,頂點為D,過點A的直線與拋物線交于點E,與y軸交于點F,且點B的坐標為(3,0),點E的坐標為(2,3).
(1)求拋物線的解析式;
(2)若點G為拋物線對稱軸上的一個動點,H為x軸上一點,當以點C、G、H、F四點所圍成的四邊形的周長最小時,求出這個最小值及點G、H的坐標;
(3)設直線AE與拋物線對稱軸的交點為P,M為直線AE上的任意一點,過點M作MN∥PD交拋物線于點N,以P、D、M、N為頂點的四邊形能否為平行四邊形?若能,請求點M的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,FC=2,則AB的長為( 。
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售一種學生用計算器,進價為每臺20元,售價為每臺30元時,每周可賣160臺,如果每臺售價每上漲2元,每周就會少賣20臺,但廠家規(guī)定最高每臺售價不能超過33元,當計算器定價為多少元時,商場每周的利潤恰好為1680元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com