【題目】如圖,在ABC中,∠BAC=120°,AB=AC=4ADBC,BD=2,延長ADE,使AE=2AD,連接BE

1)求證:ABE為等邊三角形;

2)將一塊含60°角的直角三角板PMN如圖放置,其中點(diǎn)P與點(diǎn)E重合,且∠NEM=60°,邊NEAB交于點(diǎn)G,邊MEAC交于點(diǎn)F.求證:BG=AF

3)在(2)的條件下,求四邊形AGEF的面積.

【答案】(1)見解析;(2)見解析;(3)4

【解析】試題分析:1)先證明,可知AB=2AD,因?yàn)?/span>AE=2AD,所以AB=AE,從而可知△ABE是等邊三角形.
2)由(1)可知: AE=BE然后求證即可得出BG=AF;
3)由于∴S四邊形故只需求出△ABE的面積即可.

試題解析:

(1)AB=ACADBC,

AB=2AD

AE=2AD,

AB=AE

∴△ABE是等邊三角形.

(2)∵△ABE是等邊三角形,

AE=BE

(1)

∴∠ABE=CAE,

∴∠NEMAEN=BEAAEN,

∴∠AEF=BEG

在△BEG與△AEF中,

BG=AF;

(3)(2)可知:

S四邊形

∵△ABE是等邊三角形,

AE=AB=4,

S四邊形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,A=70°B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若EFC為直角三角形,則BDF的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,城市在城市正東方向,現(xiàn)計(jì)劃在兩城市間修建一條高速鐵路(即線段),經(jīng)測量,森林保護(hù)區(qū)的中心在城市的北偏東方向上,在線段上距城市處測得在北偏東方向上,已知森林保護(hù)區(qū)是以點(diǎn)為圓心,為半徑的圓形區(qū)域,請(qǐng)問計(jì)劃修建的這條高速鐵路是否穿越保護(hù)區(qū),為什么?

(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,錯(cuò)誤的是(

A. 二次函數(shù)的圖象是開口向上的拋物線

B. 二次函數(shù)的圖象必在軸上方

C. 二次函數(shù)圖象的對(duì)稱軸是軸或與軸平行的直線

D. 二次函數(shù)圖象的頂點(diǎn)必在圖象的對(duì)稱軸上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人民商場銷售某種商品,統(tǒng)計(jì)發(fā)現(xiàn):每件盈利元時(shí),平均每天可銷售件.經(jīng)調(diào)查發(fā)現(xiàn),該商品每降價(jià)元,商場平均每天可多售出件.

假如現(xiàn)在庫存量太大,部門經(jīng)理想盡快減少庫存,又想銷售該商品日盈利達(dá)到元,請(qǐng)你幫忙思考,該降價(jià)多少?

假如部門經(jīng)理想銷售該商品的日盈利達(dá)到最大,請(qǐng)你幫忙思考,又該如何降價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,邊長為a、b的矩形,它的周長為14,面積為10,求a2b+3a3b3+ab2的值;

2)已知a+b8,ab16+c2,求(ab+c2018的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個(gè)條件為_______(只添加一個(gè)條件即可);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知等邊ABC的兩個(gè)頂點(diǎn)的坐標(biāo)為A(-4,0),B2,0).

1)用尺規(guī)作圖作出點(diǎn)C,并求出點(diǎn)C的坐標(biāo);

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c過點(diǎn)A(0,2),且拋物線上任意不同兩點(diǎn)M(x1,y1),N(x2,y2)都滿足:當(dāng)x1<x2<0時(shí),(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時(shí),(x1﹣x2)(y1﹣y2)<0.以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且BC的左側(cè),△ABC有一個(gè)內(nèi)角為60°.

(1)求拋物線的解析式;

(2)若MN與直線y=﹣2x平行,且M,N位于直線BC的兩側(cè),y1>y2,解決以下問題:

①求證:BC平分∠MBN;

②求△MBC外心的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案