【題目】問題探究
(1)如圖①,已知正方形ABCD的邊長為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.
(2)如圖②,已知正方形ABCD的邊長為4.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動.連接AM和BN,交于點(diǎn)P,求△APB周長的最大值;
問題解決
(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動.連接AM和BN,交于點(diǎn)P.求△APB周長的最大值.
【答案】(1)AM⊥BN,證明見解析;(2)△APB周長的最大值4+4;(3)△PAB的周長最大值=2+4.
【解析】
試題根據(jù)全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;
(2)如圖②,以AB為斜邊向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;
(3)如圖③,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.
試題解析:(1)結(jié)論:AM⊥BN.
理由:如圖①中,
∵四邊形ABCD是正方形,
∴AB=BC,∠ABM=∠BCN=90°,
∵BM=CN,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∵∠CBN+∠ABN=90°,
∴∠ABN+∠BAM=90°,
∴∠APB=90°,
∴AM⊥BN.
(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP.
∵∠EFP=∠FPG=∠G=90°,
∴四邊形EFPG是矩形,
∴∠FEG=∠AEB=90°,
∴∠AEF=∠BEG,
∵EA=EB,∠EFA=∠G=90°,
∴△AEF≌△BEG,
∴EF=EG,AF=BG,
∴四邊形EFPG是正方形,
∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,
∵EF≤AE,
∴EF的最大值=AE=2,
∴△APB周長的最大值=4+4.
(3)如圖③中,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.
∵AB=BC,∠ABM=∠BCN,BM=CN,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,
∴∠APB=120°,
∵∠AKB=60°,
∴∠AKB+∠APB=180°,
∴A、K、B、P四點(diǎn)共圓,
∴∠BPH=∠KAB=60°,
∵PH=PB,
∴△PBH是等邊三角形,
∴∠KBA=∠HBP,BH=BP,
∴∠KBH=∠ABP,∵BK=BA,
∴△KBH≌△ABP,
∴HK=AP,
∴PA+PB=KH+PH=PK,
∴PK的值最大時(shí),△APB的周長最大,
∴當(dāng)PK是△ABK外接圓的直徑時(shí),PK的值最大,最大值為4,
∴△PAB的周長最大值=2+4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長DE交⊙O于點(diǎn)F,延長DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;
(2)過點(diǎn)B作BG⊥AD,垂足為G,BG交DE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定每購買元商品可以獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,如果轉(zhuǎn)盤停止轉(zhuǎn)動時(shí),指針正好落在紅、綠、黃區(qū)域,那么顧客可以分別獲得元、元、元購物券,如果不愿轉(zhuǎn)動轉(zhuǎn)盤,那么可以直接獲得元購物券,設(shè)轉(zhuǎn)盤停止轉(zhuǎn)動時(shí),指針正好落在紅、綠、黃區(qū)域的概率依次為,,.
(1)平均來說,每轉(zhuǎn)動轉(zhuǎn)盤次所獲得購物券的金額是多少?
(2)小明在家也做了一個(gè)同樣的試驗(yàn),轉(zhuǎn)動轉(zhuǎn)盤次后共得購物前元,據(jù)此,小明認(rèn)為,還是直接領(lǐng)取元購物券合算,你同意他的說法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn).
(1)求這個(gè)二次函數(shù)以及直線BC的解析式;
(2)直接寫出點(diǎn)A的坐標(biāo);
(3)當(dāng)x為何值時(shí),一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿對角線折疊,設(shè)重疊部分為△EBD,那么下列說法:①是等腰三角形,;②折疊后和一定相等;③折疊后得到的圖形是軸對稱圖形;④和一定是全等三角形.正確的是______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,AC=BC,點(diǎn)D是AB中點(diǎn),過C、D的⊙O交AC、BC分別于E、F.若⊙O的半徑為,AC=2+2 ,則△CEF的面積為( )
A. B. 2 C. 2+ D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)國家實(shí)行的《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在 范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查。抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表;
根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說法中
①抽取男生的樣本中,身高 之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在組;
③抽取的樣本中抽取女生的樣本容量是38;
④初一學(xué)生身高在 之間的學(xué)生約有800人。其中合理的是( )
A. ①②B. ①④C. ②④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=8,AD=6,E為BC邊上一點(diǎn),將△ABE沿著AE翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)△EFC為直角三角形時(shí)BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以邊長為的正方形的中心為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于、兩點(diǎn),則線段的取值范圍是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com