【題目】如圖,為的直徑,為的切線,,交于點,為弧的中點,連接,交于點.
(1)求證:為的切線;
(2)求證:;
(3)若 ,求.
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)連接OD,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì),得出相等的邊和角,然后判斷出△CDO≌△CBO,判斷出∠CDO是直角即可解決.
(2)根據(jù)圓周角定理的推論,判斷出∠ADB為90°,再結(jié)合平行線的性質(zhì)得出相等的角,根據(jù)相似三角形的判定方法證明△ABD∽△OCB,然后根據(jù)相似三角形的性質(zhì)列出比例式,將比例式變形即可解決.
(3)過點D向AB作垂線,設(shè),根據(jù)射影定理,得出AG的長度,計算出OG的長度,根據(jù)勾股定理計算出DG的長度,由垂徑定理得出∠AOE的度數(shù),然后結(jié)合平行線的性質(zhì)得出相似三角形,列出比例式,即可解決.
(1)連接,
為⊙的切線,
.
,
.
,
.
.
.
,,
.
,
即.
為⊙的切線;
(2)連接,
為⊙的直徑,
.
又,
.
.
,
又∵AB=2OB=2OA,OA=OB,
∴;
(3)作,垂足為,設(shè).
,,
.
,
,
,
.
,
.
為的中點,
,
.
,
.
.
.
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地相距200千米.早上8:00貨車甲從A地出發(fā)將一批物資運往B地,行駛一段路程后出現(xiàn)故障,即刻停車與B地聯(lián)系.B地收到消息后立即派貨車乙從B地出發(fā)去接運甲車上的物資.貨車乙遇到甲后,用了18分鐘將物資從貨車甲搬運到貨車乙上,隨后開往B地.兩輛貨車離開各自出發(fā)地的路程y(千米)與時間x(小時)的函數(shù)關(guān)系如圖所示.(通話等其他時間忽略不計)
(1)求貨車乙在遇到貨車甲前,它離開出發(fā)地的路程y關(guān)于x的函數(shù)表達式.
(2)因?qū)嶋H需要,要求貨車乙到達B地的時間比貨車甲按原來的速度正常到達B地的時間最多晚1個小時,問貨車乙返回B地的速度至少為每小時多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖①,在等腰Rt△ABC中,斜邊AC=4,點D為AC上一點,連接BD,則BD的最小值為 ;
問題探究
(2)如圖②,在△ABC中,AB=AC=5,BC=6,點M是BC上一點,且BM=4,點P是邊AB上一動點,連接PM,將△BPM沿PM翻折得到△DPM,點D與點B對應(yīng),連接AD,求AD的最小值;
問題解決
(3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,點M是BC上一點,MC=4km.現(xiàn)計劃在四邊形ABCD內(nèi)選取一點P,把△DCP建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進入商業(yè)區(qū),需修建小路BP、MP,從實用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即△DCP區(qū)域面積盡可能。畡t在四邊形ABCD內(nèi)是否存在這樣的點P?若存在,請求出△DCP面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=30°,點A1在ON上,點C1在OM上,OA1=A1C1=2,C1B1⊥ON于點B1,以A1B1和B1C1為鄰邊作矩形A1B1C1D1,點A1,A2關(guān)于點B對稱,A2C2∥A1C1交OM于點C2,C2B2⊥ON于點B2,以A2B2和B2C2為鄰邊作矩形A2B2C2D2,連接D1D2,點A2,A3關(guān)于點B2對稱,A3C3∥A2C2交OM于點C3,C3B3⊥ON于點B3,以A3B3和B3C3為鄰邊作矩形A3B3C3D3,連接D2D3,……依此規(guī)律繼續(xù)下去,則DnDn+1=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[閱讀理解]
構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點問題.
例如:如圖,D是△ABC邊AB上一點,E是AC的中點,過點C作CF∥AB,交DE的延長線于點F,則易證E是線段DF的中點.
[經(jīng)驗運用]
請運用上述閱讀材料中所積累的經(jīng)驗和方法解決下列問題.
(1)如圖1,在正方形ABCD中,點E在AB上,點F在BC的延長線上,且滿足AE=CF,連接EF交AC于點G.
求證:①G是EF的中點;
②CG=BE;
[拓展延伸]
(2)如圖2,在矩形ABCD中,AB=2BC,點E在AB上,點F在BC的延長線上,且滿足AE=2CF,連接EF交AC于點G.探究BE和CG之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,若點E在BA的延長線上,點F在線段BC上,DF交AC于點H,BF=2,CF=1,( 2)中的其它條件不變,請直接寫出GH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,樓房BD的前方豎立著旗桿AC.小亮在B處觀察旗桿頂端C的仰角為45°,在D處觀察旗桿頂端C的俯角為30°,樓高BD為20米.
(1)求∠BCD的度數(shù);
(2)求旗桿AC的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)計劃對面積為3600m2的區(qū)域進行綠化,經(jīng)投標,由甲,乙兩個工程隊來完成,已知甲隊4天能完成綠化的面積等于乙隊8天完成綠化的面積,甲隊3天能完成綠化的面積比乙隊5天能完成綠化面積多50m2
(1)求甲、乙兩工程隊每天能完成綠化的面積;
(2)若甲隊每天化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,要使這次綠化的總費用不超過40萬元,則至少應(yīng)安排乙工程隊綠化多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com