【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度數(shù).
【答案】解:∵EF∥AD,AD∥BC, ∴EF∥BC,
∴∠ACB+∠DAC=180°,
∵∠DAC=116°,
∴∠ACB=64°,
又∵∠ACF=25°,
∴∠FCB=∠ACB﹣∠ACF=39°,
∵CE平分∠BCF,
∴∠BCE=19.5°,
∵EF∥BC,
∴∠FEC=∠ECB,
∴∠FEC=19.5°
【解析】由EF與AD平行,AD與BC平行,利用平行于同一條直線的兩直線平行得到EF與BC平行,利用兩直線平行同旁內(nèi)角互補(bǔ)求出∠ACB度數(shù),進(jìn)而求出∠FCB度數(shù),根據(jù)CE為角平分線求出∠BCE度數(shù),再利用兩直線平行內(nèi)錯角相等即可求出所求角度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將平行四邊形ABCD旋轉(zhuǎn)到平行四邊形A′B′C′D′的位置,下列結(jié)論錯誤的是( )
A. AB=A′B′ B. AB∥A′B′ C. ∠A=∠A′ D. △ABC≌△A′B′C′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某人在山坡坡腳A處測得電視塔尖點(diǎn)C 的仰角為60°,沿山坡向上走到P處再測得C的仰角為45°,已知OA=200米,山坡坡度為(即tan∠PAB=),且O、A、B在同一條直線上,求電視塔OC的高度以及此人所在位置點(diǎn)P的垂直高度.(測傾器的高度忽略不計(jì),結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.
(1) 求證:AC是⊙O的切線;
(2) 已知AB=10,BC=6,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果數(shù)軸上的點(diǎn)A對應(yīng)有理數(shù)為﹣2,那么與A點(diǎn)相距3個(gè)單位長度的點(diǎn)所對應(yīng)的有理數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com