【題目】小明在元旦為好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“祝你學年快樂”,其中“祝”的對面是“新”,“快”的對面是“樂”,則它的平面展開圖可能是( )

A.
B.
C.
D.

【答案】C
【解析】解:A、由對面不存在公共點可知:新與樂是對面,A不符合題意;

B、你與年;祝與樂;新與快是對面,B不符合題意;

C、正確;

D、祝與新;年與樂;你與快是對面,D不符合題意.

所以答案是:C.


【考點精析】認真審題,首先需要了解幾何體的展開圖(沿多面體的棱將多面體剪開成平面圖形,若干個平面圖形也可以圍成一個多面體;同一個多面體沿不同的棱剪開,得到的平面展開圖是不一樣的,就是說:同一個立體圖形可以有多種不同的展開圖).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D,E分別是AB,AC的中點,∠A=50°,∠ADE=60°,則∠C的度數(shù)為(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程xx+2)=m總有兩個不相等的實數(shù)根,則m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個角的補角是130°,那么這個角的余角的度數(shù)是(
A.20°
B.40°
C.70°
D.130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)前夕,某商店根據(jù)市場調(diào)查,用1320元購進第一批盒裝粽子,上市后很快售完,接著又用2880元購進第二批這種盒裝粽子,已知第二批所購的粽子盒數(shù)是第一批所購粽子盒數(shù)的2倍,且每盒粽子的進價比第一批的進價多1元.
(1)第一批盒裝粽子購進多少盒?
(2)若兩批粽子按相同的標價銷售,最后剩下50盒按八折優(yōu)惠售出,如果兩批粽子全部售出后利潤不低于25%(不考慮其他因素),那么每盒粽子的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:①該產(chǎn)品90天內(nèi)日銷售量(m件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:

②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:

(1)求m關(guān)于x的一次函數(shù)表達式;

(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】

(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(  )

A.“步行至十字路口,正好是紅燈”是必然事件

B.一組數(shù)據(jù)的波動越大,方差越小

C.315期間,了解某種產(chǎn)品的質(zhì)量問題,宜采用抽樣調(diào)查數(shù)據(jù)

D.1,1,6,3,54,5的中位數(shù)是3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并解決相關(guān)的問題.
按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項,記為a1 , 依此類推,排在第n位的數(shù)稱為第n項,記為an
一般地,如果一個數(shù)列從第二項起,每一項與它前一項的比等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0).如:數(shù)列1,2,4,8,…為等比數(shù)列,其中a1=1,公比為q=2.
則:
(1)等比數(shù)列3,6,12,…的公比q為 , 第6項是
(2)如果一個數(shù)列a1 , a2 , a3 , a4 , …是等比數(shù)列,且公比為q,那么根據(jù)定義可得到: =q, =q, =q,… =q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代數(shù)式表示).
(3)對等比數(shù)列1,2,4,…,2n﹣1求和,可采用如下方法進行:
設(shè)S=1+2+4+…+2n﹣1 ①,
則2S=2+4+…+2n ②,
②﹣①得:S=2n﹣1
利用上述方法計算:1+3+9+…+3n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以邊長為20cm的正三角形紙板的各頂點為端點,在各邊上分別截取4cm長的六條線段,過截得的六個端點作所在邊的垂線,形成三個有兩個直角的四邊形.把它們沿圖中 虛線剪掉,用剩下的紙板折成一個底為正三角形的無蓋柱形盒子,則它的容積為 cm3

查看答案和解析>>

同步練習冊答案