【題目】某公司生產的某種產品每件成本為40元,經市場調查整理出如下信息:①該產品90天內日銷售量(m件)與時間(第x天)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

②該產品90天內每天的銷售價格與時間(第x天)的關系如下表:

(1)求m關于x的一次函數(shù)表達式;

(2)設銷售該產品每天利潤為y元,請寫出y關于x的函數(shù)表達式,并求出在90天內該產品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】

(3)在該產品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.

【答案】(1)m=﹣2x+200;(2)第40天的銷售利潤最大,最大利潤是7200元;(3)46.

【解析】

試題分析:(1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式即可;

(2)設利潤為y元,則當1≤x<50時, ;當50≤x≤90時,,分別求出各段上的最大值,比較即可得到結論;

(3)直接寫出在該產品銷售的過程中,共有46天銷售利潤不低于5400元.

試題解析:(1)m與x成一次函數(shù),,將x=1,m=198,x=3,m=194代入,得:,解得:,所以m關于x的一次函數(shù)表達式為;

(2)設銷售該產品每天利潤為y元,y關于x的函數(shù)表達式為:,當1≤x<50時,=,﹣2<0,當x=40時,y有最大值,最大值是7200;

當50≤x≤90時,,﹣120<0,y隨x增大而減小,即當x=50時,y的值最大,最大值是6000;

綜上所述,當x=40時,y的值最大,最大值是7200,即在90天內該產品第40天的銷售利潤最大,最大利潤是7200元;

(3)在該產品銷售的過程中,共有46天銷售利潤不低于5400元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=(a﹣1)x2﹣x+a2﹣1 的圖象經過原點,則a的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( 。

A.a4+a5a9B.2a2b324a4b6

C.2aa+3)=﹣2a2+6aD.a+2b24a2b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF,AD+EC=AB.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在元旦為好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“祝你學年快樂”,其中“!钡膶γ媸恰靶隆,“快”的對面是“樂”,則它的平面展開圖可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是(

A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,老師提出如下問題:
如圖1,需要在A,B兩地和公路l之間修地下管道,請你設計一種最節(jié)省材料的修建方案.

小軍同學的作法如下:
①連接AB;
②過點A作AC⊥直線l于點C;
則折線段B﹣A﹣C為所求.
老師說:小軍同學的方案是正確的.
請回答:該方案最節(jié)省材料的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC和BD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是(
A.OA=OC,AD∥BC
B.∠ABC=∠ADC,AD∥BC
C.AB=DC,AD=BC
D.∠ABD=∠ADB,∠BAO=∠DCO

查看答案和解析>>

同步練習冊答案