【題目】如圖,四邊形ABCD中,對角線AC⊥BD于點O,且AO=BO=4,CO=8,∠ADB=2∠ACB,則四邊形ABCD的面積為( )
A.48B.42C.36D.32
【答案】B
【解析】
如圖,作∠ADO的平分線DP交AC于P,作PE⊥AD于E.由△POD∽△BOC,得,設OP=x,推出OD=2x,由PE⊥AD,PO⊥DO,∠PDE=∠PDO,推出PE=OP,由 ,推出,推出AD=2(4-x),在Rt△ADO中,根據AD2=AO2+DO2,可得4(4-x)2=4x2+42,求出x的值,再根據S四邊形ABCD=S△ABD+S△BDC=BDAO+BDOC=BD(OA+OC)計算即可.
如圖,作∠ADO的平分線DP交AC于P,作PE⊥AD于E.
∵∠ADO=2∠BCO,
∴∠PDO=∠BCO,
∵∠POD=∠BOC,
∴△POD∽△BOC,
∴,設OP=x,
∴,
∴OD=2x,
∵PE⊥AD,PO⊥DO,∠PDE=∠PDO,
∴PE=OP,
∴,
∴,
∴AD=2(4-x),
在Rt△ADO中,∵AD2=AO2+DO2,
∴4(4-x)2=4x2+42,
∴x=,
∴OD=3,
∴S四邊形ABCD=S△ABD+S△BDC=BDAO+BDOC=BD(OA+OC)=×7×12=42.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是一個長方形,將AD沿某一直線AF(F為折痕與CD邊的交點)折疊,使點D落在BC邊上的某一點E處,請用沒有刻度的直尺與圓規(guī)找出點E與折痕AF,并在折痕AF上找一點P滿足BP+EP最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內任意一點,OP=6cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是6cm,則∠AOB的度數(shù)是( )
A.25°B.30°
C.60°D.45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下表中的每一組值:
名稱組別 | 名稱組別 | ||||||
第1組 | 3 | 第5組 | |||||
第2組 | 5 | ||||||
第3組 | 7 | ||||||
第4組 | 8 | 第組 |
(1)根據表中前四組、、值的變化規(guī)律,第5組中 ; ;第組中 ; ; .
(2)試證明以表中每組、、為邊的三角形都是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
學習了無理數(shù)后,某數(shù)學興趣小組開展了一次探究活動:估算的近似值.
小明的方法:
∵<<,
設=3+k(0<k<1).
∴.
∴13=9+6k+k2.
∴13≈9+6k.
解得 k≈.
∴≈3+≈3.67.
問題:
(1)請你依照小明的方法,估算的近似值;
(2)請結合上述具體實例,概括出估算的公式:已知非負整數(shù)a、b、m,若a<<a+1,且m=a2+b,則≈ (用含a、b的代數(shù)式表示);
(3)請用(2)中的結論估算的近似值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC=45°,將△BCD繞點C順時針旋轉一定角度后,點B的對應點恰好與點A重合,得到△ACE.
(1)求證:AE⊥BD;
(2)若AD=2,CD=3,試求四邊形ABCD的對角線BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:
(1)為進一步打造“宜居北京”,某區(qū)擬在新竣工的矩形廣場的內部修建一個音樂噴泉,要求音樂噴泉 到廣場的兩個入口 , 的距離相等,且到廣場管理處 的距離等于 和 之間距離的一半,,, 的位置如圖所示.請在答題卷的原圖上利用尺規(guī)作圖作出音樂噴泉 的位置.(要求:不寫已知、求作、作法和結論,保留作圖痕跡,必須用鉛筆作圖)
(2)如圖,兩條公路 和 相交于 點,在 的內部有工廠 和 ,現(xiàn)要修建一個貨站 ,使貨站 到兩條公路 , 的距離相等,且到兩工廠 , 的距離相等,用尺規(guī)作出貨站 的位置.(要求:不寫作法,保留作圖痕跡,必須用鉛筆作圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了進一步降低機動車污染物排放,減輕重污染天氣污染發(fā)生頻次和污染程度,保障人民群眾身體健康,鄭州市從2017年12月4日0時至2017年12月31日24時起對機動車實施單雙號限行措施,此次限行將會大大減少空氣中的排放量,指的是霧天氣時大氣中直徑小于或等于的顆粒物,將用科學記數(shù)法表示為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com