【題目】如圖,AB是⊙O的直徑,弦CD與AB相交,連接CO,過點(diǎn)D作⊙O的切線,與AB的延長線交于點(diǎn)E,若DE∥AC,∠BAC=40°,則∠OCD的度數(shù)為( )
A.65°B.30°C.25°D.20°
【答案】C
【解析】
連接OD,如圖,先利用平行線的性質(zhì)得∠E=∠BAC=40°,再根據(jù)切線的性質(zhì)得OD⊥DE,則可計(jì)算出∠DOE=50°,接著根據(jù)圓周角定理得到∠BOC=2∠A=80°.然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算∠OCD的度數(shù).
連接OD,如圖,
∵DE∥AC,
∴∠E=∠BAC=40°,
∵DE為切線,
∴OD⊥DE,
∴∠DOE=90°-40°=50°,
∵∠BOC=2∠A=80°.
∴∠COD=80°+50°=130°,
∵OC=OD,
∴∠OCD=∠ODC=(180°-130°)=25°.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江西省)如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫面的“視線角”α約為20°,而當(dāng)手指接觸鍵盤時(shí),肘部形成的“手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.
(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離AB的長;
(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時(shí)β是否符合科學(xué)要求的100°?
(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個(gè)位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△AOB的斜邊OA在x軸的正半軸上,∠OBA=90°,且tan∠AOB=,OB=,反比例函數(shù)的圖象經(jīng)過點(diǎn)B.
(1)求反比例函數(shù)的表達(dá)式;
(2)若△AMB與△AOB關(guān)于直線AB對稱,一次函數(shù)y=mx+n的圖象過點(diǎn)M、A,求一次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形OABC是菱形,以O為圓心作⊙O,與BC相切于點(diǎn)D,交OA于E,交OC于F,連接OD,DF.
(1)求證:AB是⊙O的切線;
(2)連接EF交OD于點(diǎn)G,若∠C=45°,求證:GF2=DGOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是軸正半軸上的一動(dòng)點(diǎn),拋物線(是常數(shù),且過點(diǎn),與軸交于兩點(diǎn),點(diǎn)在點(diǎn)左側(cè),連接,以為邊做等邊三角形,點(diǎn)與點(diǎn)在直線兩側(cè).
(1)求B、C的坐標(biāo);
(2)當(dāng)軸時(shí),求拋物線的函數(shù)表達(dá)式;
(3)①求動(dòng)點(diǎn)所成的圖像的函數(shù)表達(dá)式;
②連接,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,∠ABC=90°,∠ACB=60°,將ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到DGC,再將ABC沿AB所在直線翻折得到ABE,連接AD,BG,延長BG交AD于點(diǎn)F,連接CF.
(1)求證:四邊形ABCF是矩形;
(2)若GF=2,求四邊形AECD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M是矩形ABCD的邊AD的中點(diǎn),點(diǎn)P是BC邊上一動(dòng)點(diǎn),PE⊥MC,PF⊥BM,垂足為E、F.
(1)當(dāng)矩形ABCD的長與寬滿足什么條件時(shí),四邊形PEMF為矩形?猜想并證明你的結(jié)論.
(2)在(1)中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),矩形PEMF變?yōu)檎叫,為什么?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)購的日益盛行,物流行業(yè)已逐漸成為運(yùn)輸業(yè)的主力,已知某大型物流公司有A、B兩種型號的貨車,A型貨車的滿載量是B型貨車滿載量的2倍多4噸,在兩車滿載的情況下,用A型貨車載1400噸貨物與用B型貨車載560噸貨物的用車數(shù)量相同.
(1)1輛A型貨車和1輛B型貨車的滿載量分別是多少?
(2)該物流公司現(xiàn)有120噸貨物,可以選擇上述兩種貨車運(yùn)送,在滿載的情況下,有幾種方案可以一次性運(yùn)完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù) y=ax2+bx 的圖象與 x 軸交于點(diǎn) O(0,0)和 點(diǎn) B,拋物線的對稱軸是直線 x=3.點(diǎn) A 是拋物線在第一象限上的一個(gè)動(dòng)點(diǎn), 過點(diǎn) A 作 AC⊥x 軸,垂足為 C.S△AOB=3S△ABC,AC2=OCBC.
(1)求該二次函數(shù)的解析式;
(2)拋物線的對稱軸與 x 軸交于點(diǎn) M.連接 AM,點(diǎn) N 是線段 OA 上的一點(diǎn).當(dāng) ∠AMN=∠AOM 時(shí),求點(diǎn) N 的坐標(biāo);
(3)點(diǎn) P 是拋物線上的一個(gè)動(dòng)點(diǎn).點(diǎn) Q 是 y 軸上的一動(dòng)點(diǎn).當(dāng)以 A,B,P,Q 四個(gè)點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫出點(diǎn) P 坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com