如圖,CA、CB為⊙O的切線(xiàn),切點(diǎn)分別為A、B.直徑延長(zhǎng)AD與CB的延長(zhǎng)線(xiàn)交于點(diǎn)E.AB、CO交于點(diǎn)M,連接OB.
(1)求證:∠ABO=∠ACB;
(2)若sin∠EAB=,CB=12,求⊙O 的半徑及的值.
(1)證明見(jiàn)解析;(2)4,

試題分析:(1)證明∠ABO =∠BCO即可證得∠ABO=∠ACB.
(2)由sin∠BCO =sin∠EAB=可求得,從而由CB=12求得⊙O 的半徑OB為4;由△OBE∽△CAE列比例式得
(1)∵CA、CB為⊙O的切線(xiàn),
∴ CA=CB, ∠BCO=∠ACB,∴∠CBO=90°.∴ CO⊥AB.
∴∠ABO +∠CBM=∠BCO +∠CBM=90°.∴∠ABO =∠BCO.∴∠ABO=∠ACB.
(2) ∵ OA=OB, ∴∠EAB=∠ABO.∴∠BCO=∠EAB.
∵ sin∠BCO =sin∠EAB=,∴
∵ CB=12,∴ OB=4,即⊙O 的半徑為4.
∵∠OBE=∠CAE=90°,∠E=∠E,∴△OBE∽△CAE.∴
∵CA=CB=12,∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a、b是正實(shí)數(shù),那么,是恒成立的.
(1)由恒成立,說(shuō)明恒成立;
(2)如圖,已知AB是直徑,點(diǎn)P是弧上異于點(diǎn)A和點(diǎn)B的一點(diǎn),PC⊥AB,垂足為C,AC=a,BC=b,由此圖說(shuō)明恒成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點(diǎn)D,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AD為⊙O的直徑,∠ABC=75°,且AC=BC,則∠BED=          °

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

機(jī)器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O上.
(1)求弦BC的長(zhǎng);
(2)求圓O的半徑長(zhǎng).
(本題參考數(shù)據(jù):sin 67.4° =,cos 67.4°=,tan 67.4° =

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O的半徑為2,直線(xiàn)l上有一點(diǎn)P滿(mǎn)足PO=2,則直線(xiàn)l與⊙O的位置關(guān)系是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓錐的底面半徑為4cm,母線(xiàn)長(zhǎng)為3cm,則圓錐的側(cè)面積是 (    )
A.15cm2B.15πcm2C.12 cm2D.12πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用一張面積為60π的扇形鐵皮,做成一個(gè)圓錐容器的側(cè)面(接縫處不計(jì)),若這個(gè)圓錐的底面半徑為5,則這個(gè)圓錐的母線(xiàn)長(zhǎng)為         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,□ABCD的頂點(diǎn)A、B、D在⊙O上,頂點(diǎn)C在⊙O的直徑BE上,∠ADC=54°,連接AE,則∠AEB的度數(shù)為( 。

A.36°      B.46°       C.27°      D.63°

查看答案和解析>>

同步練習(xí)冊(cè)答案