精英家教網 > 初中數學 > 題目詳情
如圖,AD為⊙O的直徑,∠ABC=75°,且AC=BC,則∠BED=          °
135°.

試題分析:由AD為⊙O的直徑,∠ABC=75°,且AC=BC,可求得∠ABD=90°,∠D=∠C=30°,繼而可得∠CBD=15°,由三角形內角和定理,即可求得答案.
∵AD為⊙O的直徑,
∴∠ABD=90°,
∵AC=BC,∠ABC=75°,
∴∠BAC=∠ABC=75°,
∴∠C=180°-∠ABC-∠BAC=30°,∠CBD=∠ABD-∠ABC=15°,
∴∠D=∠C=30°,
∴∠BED=180°-∠CBD-∠D=135°.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=,求BN的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖△ABC中,AB=AC,AE⊥BC,E為垂足,F為AB上一點.以BF為直徑的圓與AE相切于M點,交BC于G點.
(1)求證:BM平分∠ABC;
(2)當BC=4,cosC=時,
①求⊙O的半徑;
②求圖中陰影部分的面積.(結果保留π與根號)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,CA、CB為⊙O的切線,切點分別為A、B.直徑延長AD與CB的延長線交于點E.AB、CO交于點M,連接OB.
(1)求證:∠ABO=∠ACB;
(2)若sin∠EAB=,CB=12,求⊙O 的半徑及的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,△ABC的頂點A、B、C、均在⊙O上,若∠ABC+∠AOC=90°,則∠AOC的大小是(  )

A.30°         B.45°              C.60°           D.70°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為

A.4          B.6             C.            D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在線段BC、CD上有動點F、E,點F以每秒2cm的速度,在線段BC上從點B向點C勻速運動;同時點E以每秒1cm的速度,在線段CD上從點C向點D勻速運動.當點F到達點C時,點E同時停止運動.設點F運動的時間為t(秒).
(1)求AD的長;
(2)設四邊形BFED的面積為y,求y 關于t的函數關系式并寫出自變量的取值范圍
(3)當t為何的值時,以EE為半徑的⊙F與CD邊只有一個公共點.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(1)在圖①的半徑為R的半圓O內(含。,求出一邊落在直徑MN上的最大的正三角形的面積?
(2)在圖②的半徑為R的半圓O內(含。蟪鲆贿吢湓谥睆組N上的最大的正方形的面積?
問題解決
(3)如圖③,現有一塊半徑R=6的半圓形鋼板,是否可以裁出一邊落在MN上的面積最大的矩形?若存在,請說明理由,并求出這個矩形的面積;若不存在,說明理由?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知⊙的半徑為1cm,⊙的半徑為3cm,兩圓的圓心距為4cm,則兩圓的位置關系是( 。
A.外離B.外切C.相交D.內切

查看答案和解析>>

同步練習冊答案