【題目】如果從一個四邊形一邊上的點到對邊的視角是直角,那么稱該點為直角點.例如,如圖的四邊形ABCD中,點在邊CD上,連結(jié)、,,則點為直角點.若點、分別為矩形ABCD邊、CD上的直角點,且,,則線段的長為____.
【答案】或
【解析】
作FH⊥AB于點H,利用已知得出△ADF∽△FCB,進而得出,求得構(gòu)造的直角三角形的兩條直角邊即可得出答案.
作FH⊥AB于點H,連接EF.
∵∠AFB=90°,
∴∠AFD+∠BFC=90°,
∵∠AFD+∠DAF=90°,
∴∠DAF=∠BFC,
又∵∠D=∠C,
∴△ADF∽△FCB,
∴,即,
∴FC=2或3,
∵點F,E分別為矩形ABCD邊CD,AB上的直角點,
∴AE=FC,
∴當(dāng)FC=2時,AE=2,EH=1,
∴EF2=FH2+EH2=()2+12=7,
∴EF=,
當(dāng)FC=3時,此時點E與點H重合,即EF=BC=,
綜上,EF=或.
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)“神舟”飛船完成變軌后,就在離地球表面400 km的圓形軌道上運行,如圖,當(dāng)飛船運行到地球表面上P點的正上方的A處時,從飛船上能直接看到的地球上最遠的點與P點相距( )
(地球半徑約為6 400 km,π≈3,sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,結(jié)果保留整數(shù)).
A. 2 133 km B. 2 217 km C. 2 298 km D. 7 467 km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方體形的木柜放在墻角處(與墻面和地面均沒有縫隙),有一只螞蟻從柜角A處沿著木柜表面爬到柜角C1處.
(1)請你在備用圖中畫出螞蟻能夠最快到達目的地的可能路徑;
(2)當(dāng)AB=4,BC=4,CC1=5時,求螞蟻爬過的最短路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線過原點且與x軸交于點A,頂點的縱坐標(biāo)是.
求拋物線的函數(shù)表達式及點A坐標(biāo);
根據(jù)圖象回答:當(dāng)x為何值時拋物線位于x軸上方?
直接寫出所求拋物線先向左平移3個單位,再向上平移5個單位所得到拋物線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BE=DG;(2)如圖3,如果α=45°,AB=2,AE=4,求點G到BE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在和中,,,.
如圖1,點D在BC上,求證:,.
將圖1中的繞點C按逆時針方向旋轉(zhuǎn)到圖2所示的位置,旋轉(zhuǎn)角為為銳角,線段DE,AE,BD的中點分別為P,M,N,連接PM,PN.
請直接寫出線段PM,PN之間的關(guān)系,不需證明;
若,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交于A、B兩點,與y軸交于點C,則下列說法錯誤的是( 。
A. AB=4
B. ∠ABC=45°
C. 當(dāng)x>0時,y<﹣3
D. 當(dāng)x>1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量兩個路燈之間的距離,小明在夜晚由路燈AB走向路燈CD,當(dāng)他走到點E時,發(fā)現(xiàn)身后他頭頂部F的影子剛好接觸到路燈AB的底部A處,當(dāng)他向前再步行15m到達G點時,發(fā)現(xiàn)身前他頭頂部H的影子剛好接觸到路燈CD的底部C處,已知小明同學(xué)的身高是1.7m,兩個路燈的高度都是8.5米,則AC=_____m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com