【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°, AC=4.5cm. M是邊AC上的一個(gè)動(dòng)點(diǎn),連接MB,過點(diǎn)M作MB的垂線交AB于點(diǎn)N. 設(shè)AM=x cm,AN=y cm.(當(dāng)點(diǎn)M與點(diǎn)A或點(diǎn)C重合時(shí),y的值為0)
探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1) 通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組對(duì)應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 1.7 | 1.6 | 1.2 | 0 |
(要求:補(bǔ)全表格,相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系xOy,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AN=AM時(shí),AM的長(zhǎng)度約為 cm(結(jié)果保留一位小數(shù)).
【答案】(1)1.4; (2)詳見解析;(3)3.4.
【解析】
(1)如圖,作輔助線:過N作NP⊥AC于P,證明△NPM∽△MCB,列比例式可得結(jié)論;
(2)描點(diǎn)畫圖即可;
(3)同理證明△NPM∽△MCB,列比例式,解方程可得結(jié)論.
解:(1)如圖,過N作NP⊥AC于P,
Rt△ACB中,∠CAB=30°, AC=4.5cm.
∴BC=
當(dāng)x=2時(shí),即AM=2,
∴MC=2.5,
∵∠NMB=90°,
易得△NPM∽△MCB,
∴ = ,
設(shè)NP=5a,PM=9a,則AP=15a,AN=10a,
∵AM=2,
∴15a+9a=2,
a= ,
∴y=AN=10×1.73×≈1.4;
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 0 | 0.4 | 0.8 | 1.2 | 1.4 | 1.6 | 1.7 | 1.6 | 1.2 | 0 |
故答案為:1.4;
(2)如圖所示:
(3)設(shè)PN=a,則AN=2a,AP=a,
∵AN=AM,∴AM=4a,
如圖,由(1)知:△NPM∽△MCB,
∴,即 ,
解得:a≈0.84,
∴AM=4a=4×0.84=3.36≈3.4(cm).
故答案為:(1)1.4; (2)詳見解析;(3)3.4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解本校學(xué)生平均每天的課外做作業(yè)的時(shí)間情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查的結(jié)果分為A、B、C、D四個(gè)等級(jí)(設(shè)做作業(yè)時(shí)間為t小時(shí),A:t<1;B:1≤t<1.5;C:1.5≤t<2;D:t≥2)根據(jù)調(diào)查結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)本次調(diào)查中,抽取的學(xué)生人數(shù)是 ;
(2)圖2中α的度數(shù)是 ,并補(bǔ)全圖1條形統(tǒng)計(jì)圖;
(3)該校共有2800名學(xué)生名,請(qǐng)估計(jì)作業(yè)時(shí)間不少于2小時(shí)的人數(shù)為 ;
(4)在此次調(diào)查中,甲班有2人平均每天的作業(yè)時(shí)間超過2小時(shí),乙班有3名學(xué)生平均每天作業(yè)時(shí)間超過2小時(shí),現(xiàn)從這5人中選取2人參加座談會(huì),請(qǐng)用樹狀圖或列表的方法,求出“所選的2人來自不同班級(jí)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=2x-2的圖像與y軸交于點(diǎn)A,直線y2=-2x+6的圖像與y軸交于點(diǎn)B,兩者相交于點(diǎn)C.
(1)方程組的解是______;
(2)當(dāng)y1>0與y2>0同時(shí)成立時(shí),x的取值范圍為_____;
(3)求△ABC的面積;
(4)在直線y1=2x-2的圖像上存在異于點(diǎn)C的另一點(diǎn)P,使得△ABC與△ABP的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民生活用水實(shí)行“階梯水價(jià)”收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)見下表:
每戶每月用水量 | 水的價(jià)格(單位:元/噸) |
不超過20噸的部分 | 1.6 |
超過20噸且不超過30噸的部分 | 2.4 |
超過30噸的部分 | 3.3 |
例:甲用戶1月份用水25噸,應(yīng)繳水費(fèi) (元).
(1)若乙用戶1月份用水10噸,則應(yīng)繳水費(fèi)________元;
(2)若丙用戶1月份應(yīng)繳水費(fèi)62.6元,則用水________噸;.
(3)若丁用戶1、2月份共用水60噸(1月份用水量超過了2月份),設(shè)2月份用水噸,求丁用戶1、2月份各應(yīng)繳水費(fèi)多少元.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十九大”之后,某種子站讓利給農(nóng)民,對(duì)價(jià)格為a元/千克的種子,如果一次購買2千克以上的,超過2千克部分的種子價(jià)格打8折.某科技人員對(duì)付款金額和購買量這兩個(gè)變量的對(duì)應(yīng)關(guān)系用列表法做了分析,并繪制出了函數(shù)圖象.以下是該科技人員繪制的圖象和表格的不完整資料,已知點(diǎn)A的坐標(biāo)為(2,10).請(qǐng)你結(jié)合表格和圖象:
付款金額(元) | a | 7.5 | 10 | 12 | b |
購買量(千克) | 1 | 1.5 | 2 | 2.5 | 3 |
(1)、指出付款金額和購買量哪個(gè)變量是函數(shù)的自變量x,并寫出表中a、b的值;
(2)、求出當(dāng)x>2時(shí),y關(guān)于x的函數(shù)解析式;
(3)、甲農(nóng)戶將8.8元錢全部用于購買該玉米種子,乙農(nóng)戶購買了4165克該玉米種子,分別計(jì)算他們的購買量和付款金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①的5倍與的和的一半用代數(shù)式表示是;②,都是單項(xiàng)式,也都是整式;③(、、是常數(shù),)是二次三項(xiàng)式;④,,5是的項(xiàng);⑤單項(xiàng)式的系數(shù)是-1,次數(shù)是3,其中正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購買十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購買隊(duì)服超過80套,則購買足球打八折.
(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購買裝備所花的費(fèi)用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長(zhǎng)時(shí)間,四邊形PQBA是矩形?
(3)經(jīng)過多長(zhǎng)時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍和爸爸同時(shí)從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時(shí)間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時(shí)間x(分)的關(guān)系如圖所示,請(qǐng)結(jié)合圖像,解答下列問題:
(1)a= b= ,m=
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時(shí),距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時(shí)與小軍相距100米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com