【題目】某市居民生活用水實(shí)行“階梯水價(jià)”收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)見下表:
每戶每月用水量 | 水的價(jià)格(單位:元/噸) |
不超過20噸的部分 | 1.6 |
超過20噸且不超過30噸的部分 | 2.4 |
超過30噸的部分 | 3.3 |
例:甲用戶1月份用水25噸,應(yīng)繳水費(fèi) (元).
(1)若乙用戶1月份用水10噸,則應(yīng)繳水費(fèi)________元;
(2)若丙用戶1月份應(yīng)繳水費(fèi)62.6元,則用水________噸;.
(3)若丁用戶1、2月份共用水60噸(1月份用水量超過了2月份),設(shè)2月份用水噸,求丁用戶1、2月份各應(yīng)繳水費(fèi)多少元.(用含的代數(shù)式表示)
【答案】(1)16;(2)32; (3) 1月份應(yīng)繳水費(fèi)元.當(dāng)2月份用水量不超過20噸時(shí),應(yīng)繳水費(fèi)1.6元;當(dāng)2月份用水量超過20噸但不超過30噸時(shí),應(yīng)繳水費(fèi)元.
【解析】
(1)根據(jù)每戶每月用水量不超過20時(shí),水費(fèi)價(jià)格為1.6元/噸,可知乙用戶1月份用水10噸,則應(yīng)繳水費(fèi):1.6×10,計(jì)算即可;(2)由于用水30噸時(shí)應(yīng)繳水費(fèi)為:1.6×20+2.4×10=56<62.6,所以丙用戶1月份用水超過30噸,列出方程,求解即可;(3)由丁用戶1、2兩個(gè)月共用水60噸,設(shè)2月份用水噸,則1月份用水(60-a)噸,根據(jù)1月份用水量超過了2月份,得出1月份用水量超過了2月份,得出1月份用水量大于30噸,2月份用水量小于30噸,根據(jù)三級收費(fèi)求出1月份應(yīng)繳水費(fèi),分兩種情況求出2月份應(yīng)繳水費(fèi),①當(dāng)2月份用水量不超過20噸時(shí);②當(dāng)2月份用水量超過20噸但不超過30噸時(shí);
解:(1)依題意得:1.6×10=16;
故答案為:16
(2) 依題意得:由于用水30噸時(shí)應(yīng)繳水費(fèi)為:1.6×20+2.4×10=56<62.6,所以丙用戶1月份用水超過30噸,設(shè)用水為x噸,依題意得:
解得:x=32
故答案為:32;
(3)因?yàn)?/span>1月份用水量超過了2月份,所以1月份用水量超過了30噸,2月份用水量少于30噸.1月份應(yīng)繳水費(fèi)元.
①當(dāng)2月份用水量不超過20噸時(shí),應(yīng)繳水費(fèi)1.6元;
②當(dāng)2月份用水量超過20噸但不超過30噸時(shí),應(yīng)繳水費(fèi)元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:圖形都是由面積為1的正方形按一定的規(guī)律組成,其中第(1)個(gè)圖形中面積為1的正方形有9個(gè),第(2)個(gè)圖形中面積為1的正方形有14個(gè),…,按此規(guī)律.則第(9)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為(。
A.49B.45C.54D.50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解江城中學(xué)學(xué)生的身高情況,隨機(jī)對該校男生、女生的身高進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如下所示的統(tǒng)計(jì)表和如圖所示的統(tǒng)計(jì)圖.
組別 | 身高(cm) |
A | x<150 |
B | 150≤x<155 |
C | 155≤x<160 |
D | 160≤x<165 |
E | x≥165 |
根據(jù)圖表中提供的信息,回答下列問題:
(1)女生身高在B組的有________人;
(2)在樣本中,身高在150≤x<155之間的共有________人,身高人數(shù)最多的在________組(填組別序號(hào));
(3)已知該校共有男生500人,女生480人,請估計(jì)身高在155≤x<165之間的學(xué)生有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,在5天中,兩臺(tái)機(jī)床每天出次品的數(shù)量如下表:
甲 | 0 | 1 | 2 | 0 | 2 |
乙 | 2 | 1 | 0 | 1 | 1 |
關(guān)于以上數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差,說法不正確的是
A. 甲、乙的平均數(shù)相等B. 甲、乙的眾數(shù)相等
C. 甲、乙的中位數(shù)相等D. 甲的方差大于乙的方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是線段AB上的一點(diǎn),點(diǎn)M、N分別是線段AP、PB的中點(diǎn).
(1)如圖1,若點(diǎn)P是線段AB的中點(diǎn),且MP=4cm,求線段AB的長;
(2)如圖2,若點(diǎn)P是線段AB上的任一點(diǎn),且AB=12cm,求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°, AC=4.5cm. M是邊AC上的一個(gè)動(dòng)點(diǎn),連接MB,過點(diǎn)M作MB的垂線交AB于點(diǎn)N. 設(shè)AM=x cm,AN=y cm.(當(dāng)點(diǎn)M與點(diǎn)A或點(diǎn)C重合時(shí),y的值為0)
探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1) 通過取點(diǎn)、畫圖、測量,得到了x與y的幾組對應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 1.7 | 1.6 | 1.2 | 0 |
(要求:補(bǔ)全表格,相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系xOy,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AN=AM時(shí),AM的長度約為 cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2018春季環(huán)境整治活動(dòng)中,某社區(qū)計(jì)劃對面積為1600m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,若甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用5天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積;
(2)設(shè)甲工程隊(duì)施工x天,乙工程隊(duì)施工y天,剛好完成綠化任務(wù),求y關(guān)于x的函數(shù)關(guān)系式;
(3)若甲隊(duì)每天綠化費(fèi)用是0.6萬元,乙隊(duì)每天綠化費(fèi)用為0.25萬元,且甲乙兩隊(duì)施工的總天數(shù)不超過25天,則如何安排甲乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,點(diǎn)A、O、B依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針方向以每秒2°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針方向以每秒4°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0秒≤t≤90秒).
(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運(yùn)動(dòng)過程中,當(dāng)∠AOB第二次達(dá)到60°時(shí),求t的值.
(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過180°的角)的平分線?如果存在,請直接寫出t的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com