【題目】已知:如圖,在正方形ABCD中,點E、FBD上,且ABBEDF

(1)求證:四邊形AECF是菱形;

(2)若正方形的邊長為2,求四邊形AECF的面積

【答案】(1)見解析;(2)-4.

【解析】1)由對角線互相垂直平分的四邊形是菱形,AO=CO,EO=FO,ACEF即可證得;

(2)先求出AC、BD的長,再根據(jù)已知求出EF的長,然后利用菱形的面積公式進行計算即可得.

(1)如圖,連接AC,交BD于點O,

∵四邊形ABCD是正方形,

OA=OC,OB=OD,

又∵BE=DF,

BE-BO=DF-DO,即OE=OF,

∴四邊形AFCE是平行四邊形

ACEF,□AFCE是菱形;

(2)∵四邊形ABCD是正方形,

AC=BD,AB=AD=2, BAD=90°

AC=BD=,

AB=BE=DF,

BF=DE=-2,

EF=4-,

S菱形EF·AC=(4--4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】像一個人臉郁悶的神情.如圖,邊長為a的正方形紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個字圖案(陰影部分),設剪去的兩個小直角三角形的兩直角邊長分別為x、y,剪去的小長方形長和寬也分別為x,y.

(1)用式子表示的面積S;(用含a、x、y的式子表示)

(2)當a=20,x=5,y=4時,求S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角△ABC中,∠ACB=90°,點E為△ABC內一點,且∠BEC=90°,將△BEC繞C點順時針旋轉90°,使BC與AC重合,得到△AFC,連接EF交AC于點M,已知BC=10,CF=6,則AM:MC的值為(
A.4:3
B.3:4
C.5:3
D.3:5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐵路貨運調度站有A、B兩個信號燈,在燈這旁?恐、乙、丙三列火車.它們中最長的車長與居中車長之差等于居中車長與最短車長之差,其中乙車的車長居中,最開始的時候,甲、丙兩車車尾對齊,且車尾正好位于A信號燈處,而車頭則沖著B信號燈的方向,乙車的車尾則位于B信號燈處,車頭則沖著A的方向,現(xiàn)在,三列火車同時出發(fā)向前行駛,3秒之后三列火車的車頭恰好相遇,再過9秒,甲車恰好超過丙車,而丙車也正好完全和乙車錯開,請問:甲乙兩車從車頭相遇直到完全錯開一共用了_____秒鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市電力部門對一般照明用電實行“階梯電價”收費,具體收費標準如下:

第一檔:月用電量不超過240度的部分的電價為每度0.6元;

第二檔:月用電量超過240度但不超過400度部分的電價為每度0.65元;

第三檔:月用電量超過400度的部分的電價為每度0.9元.

(1)已知老王家去年5月份的用電量為380度,則老王家5月份應交電費  元;

(2)若去年6月份老王家用電的平均電價為0.70元,求老王家去年6月份的用電量;

(3)已知老王家去年7、8月份的用電量共500度(7月份的用電量少于8月份的用電量),兩個月的總電價是303元,求老王家7、8月的用電量分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知數(shù)軸上兩點A,B對應的數(shù)分別是﹣1,3,點P為數(shù)軸上的一動點,其對應的數(shù)為x

(1)A、B兩點的距離AB=   

(2)在數(shù)軸上是否存在點P,使PA+PB=6?若存在,請求出x的值;若不存在,請說明理由.

(3)如圖2,若點P以每秒1個單位的速度從點O出發(fā)向右運動,同時點A以每秒5個單位的速度向左運動,點B以每秒20個單位的速度向右運動,在運動的過程中,M、N分別是AP、OB的中點,問:的值是否發(fā)生變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知A(2,2)、B(4,0).若在坐標軸上取點C,使△ABC為等腰三角形,則滿足條件的點C的個數(shù)是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上,點A、B分別表示點﹣5、3,M、N兩點分別從A、B同時出發(fā)以3cm/s、1cm/s的速度沿數(shù)軸向右運動.

(1)求線段AB的長;

(2)求當點M、N重合時,它們運動的時間;

(3)M、N在運動的過程中是否存在某一時刻,使BM=2BN.若存在請求出它們運動的時間,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,航空母艦始終以40千米/時的速度由西向東航行,飛機以800千米/時的速度從艦上起飛,向西航行執(zhí)行任務,如果飛機在空中最多能連續(xù)飛行4個小時,那么它在起飛_____小時后就必須返航,才能安全停在艦上?

查看答案和解析>>

同步練習冊答案