【題目】中,,點(diǎn)P是平面內(nèi)不與點(diǎn)A,C重合的任意一點(diǎn),連接,將線段繞點(diǎn)P旋轉(zhuǎn)得到線段,連結(jié)

1)觀察猜想:如圖1,當(dāng)時,線段繞點(diǎn)P順時針旋轉(zhuǎn)得到線段,則的值是________,直線相交所成的較小角的度數(shù)是________;

2)類比探究:如圖2,當(dāng)時,線段繞點(diǎn)P順時針旋轉(zhuǎn)得到線段.請直接寫出相交所成的較小角的度數(shù),并說明相似,求出的值;

3)拓展延伸:當(dāng)時,且點(diǎn)P到點(diǎn)C的距離為,線段繞點(diǎn)P逆時針旋轉(zhuǎn)得到線段,若點(diǎn)A,CP在一條直線上時,求的值.

【答案】11,60°;(2,直線AP相交所成的較小角的度數(shù)是45°;(3的值為

【解析】

解:(1)如圖1中,延長的延長線于K,設(shè)J

,

都是等邊三角形,

,

,

,

,

,

,直線相交所成的較小角的度數(shù)是60°,

故答案為1,60°

2)如圖2中,設(shè)O

都是等腰直角三角形,

,

,

,

,

,

,直線AP相交所成的較小角的度數(shù)是45°

3)如圖3-1中,當(dāng)點(diǎn)P的延長線上時,設(shè),則,

,

中,∵

,

如圖3-2中,當(dāng)點(diǎn)P落在上時,設(shè),則

,

,

綜上所述, 的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(04),已知點(diǎn)Em0)是線段DO上的動點(diǎn),過點(diǎn)EPE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1)求該拋物線的解析式;

2)當(dāng)點(diǎn)P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,兩點(diǎn)之間線段最短,因此,連接兩點(diǎn)間線段的長度叫做兩點(diǎn)間的距離;同理,連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短,因此,直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離.類似地,連接曲線外一點(diǎn)與曲線上各點(diǎn)的所有線段中,最短線段的長度,叫做點(diǎn)到曲線的距離.依此定義,如圖,在平面直角坐標(biāo)系中,點(diǎn)到以原點(diǎn)為圓心,以1為半徑的圓的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2x+x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)如圖1,連接CD,求線段CD的長;

(2)如圖2,點(diǎn)P是直線AC上方拋物線上一點(diǎn),PFx軸于點(diǎn)F,PF與線段AC交于點(diǎn)E;將線段OB沿x軸左右平移,線段OB的對應(yīng)線段是O1B1,當(dāng)PE+EC的值最大時,求四邊形PO1B1C周長的最小值,并求出對應(yīng)的點(diǎn)O1的坐標(biāo);

(3)如圖3,點(diǎn)H是線段AB的中點(diǎn),連接CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點(diǎn)B2旋轉(zhuǎn)一周在旋轉(zhuǎn)過程中,點(diǎn)O2,C的對應(yīng)點(diǎn)分別是點(diǎn)O3,C1,直線O3C1分別與直線AC,x軸交于點(diǎn)M,N.那么,在△O2B2C的整個旋轉(zhuǎn)過程中,是否存在恰當(dāng)?shù)奈恢,使?/span>AMN是以MN為腰的等腰三角形?若存在,請直接寫出所有符合條件的線段O2M的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,菱形與菱形的頂點(diǎn)重合,點(diǎn)在對角線上,且.

1)問題發(fā)現(xiàn):

的值為________

2)探究與證明:

將菱形繞點(diǎn)按順時針方向旋轉(zhuǎn)角(),如圖二所示,試探究線段之間的數(shù)量關(guān)系,并說明理由;

3)拓展與運(yùn)用:

菱形在旋轉(zhuǎn)過程中,當(dāng)點(diǎn),三點(diǎn)在一條直線上時,如圖三所示,連接并延長,交于點(diǎn),若,則的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學(xué)校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為獎勵優(yōu)秀學(xué)生,某校準(zhǔn)備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元.

1)求文具袋和圓規(guī)的單價.

2)學(xué)校準(zhǔn)備購買文具袋20個,圓規(guī)100個,文具店給出兩種優(yōu)惠方案:

方案一:每購買一個文具袋贈送1個圓規(guī).

方案二:購買10個以上圓規(guī)時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.學(xué)校選擇哪種方案更劃算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,,,是邊的中點(diǎn),點(diǎn)為邊上的一個動點(diǎn)(與點(diǎn)不重合),過點(diǎn),交邊于點(diǎn).聯(lián)結(jié)、,設(shè)

1)當(dāng)時,求的面積;

2)如果點(diǎn)關(guān)于的對稱點(diǎn)為,點(diǎn)恰好落在邊上時,求的值;

3)以點(diǎn)為圓心,長為半徑的圓與以點(diǎn)為圓心,長為半徑的圓相交,另一個交點(diǎn)恰好落在線段上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商業(yè)集團(tuán)新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費(fèi)用(設(shè)施維修費(fèi)、車輛管理人員工資等)為800元.為制定合理的收費(fèi)標(biāo)準(zhǔn),該集團(tuán)對一段時間每天小車停放輛次與每輛次小車的收費(fèi)情況進(jìn)行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費(fèi)不超過5元時,每天來此處停放的小車可達(dá)1440輛次;若停車費(fèi)超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車的停車費(fèi)x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費(fèi)﹣每天的固定支出)

1)當(dāng)x5時,寫出yx之間的關(guān)系式,并說明每輛小車的停車費(fèi)最少不低于多少元;

2)當(dāng)x5時,寫出yx之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);

3)該集團(tuán)要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費(fèi)應(yīng)定為多少元?此時日凈收入是多少?

查看答案和解析>>

同步練習(xí)冊答案