【題目】如圖1,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn)、,點(diǎn)為軸負(fù)半軸上一點(diǎn), 于點(diǎn)交軸于點(diǎn).已知拋物線經(jīng)過點(diǎn)、、.
()求拋物線的函數(shù)式.
()連接,點(diǎn)在線段上方的拋物線上,連接、,若和面積滿足,求點(diǎn)的坐標(biāo).
()如圖, 為中點(diǎn),設(shè)為線段上一點(diǎn)(不含端點(diǎn)),連接.一動(dòng)點(diǎn)從出發(fā),沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到,再沿著線段以每秒個(gè)單位的速度運(yùn)動(dòng)到后停止.若點(diǎn)在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少,請(qǐng)直接寫出最少時(shí)間和此時(shí)點(diǎn)的坐標(biāo).
【答案】(1)拋物線解析式為;(2)點(diǎn)的坐標(biāo)為或;(3)此時(shí), .
【解析】試題分析:(1)先證明△AON∽△COB,利用相似比計(jì)算出OA=1,得到A(-1,0),然后利用交點(diǎn)式可求出拋物線解析式為y=-x2+x+3;
(2)先利用待定系數(shù)法求出直線BC的解析式為y=-x+3,作PQ∥y軸交BC于Q,如圖1,設(shè)P(x,-x2+x+3),則Q(x,-x+3),再計(jì)算出DQ=-x2+3x,根據(jù)三角形面積公式得S△BCD=S△CDQ+S△BDQ=-x2+6x,然后根據(jù)S△BCD=S△ABC得到-x2+6x=××(4+1)×3,然后解方程求出x即可得到D點(diǎn)坐標(biāo);
(3)過做平行軸交拋物線于,過做,可證,由此,過作的垂線,交點(diǎn)即為點(diǎn),可得值和點(diǎn)坐標(biāo).
試題解析:( ),
,
∴,
且,
∴,
,
, , ,
∴,
∴.
設(shè)拋物線解析式為,
將代入得,
∴拋物線解析式為.
()設(shè)直線的解析式為,
把, 代入得,
解得,
∴直線的解析式為,
作軸交于,如圖1,設(shè)
,則,
,
∴,
∵,
∴,
整理得,解得, ,
∴點(diǎn)的坐標(biāo)為或.
()設(shè)運(yùn)動(dòng)時(shí)間為,則
,
,
過做平行軸交拋物線于,過做,
∵,
∴,
,
∴,
∴,
∴.
過作的垂線,交點(diǎn)即為點(diǎn),
此時(shí),
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(2a﹣6,a+1),若點(diǎn)P在坐標(biāo)軸上,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】清明期間,某校師生組成200個(gè)小組參加“保護(hù)環(huán)境,美化家園”植樹活動(dòng).綜合實(shí)際情況,校方要求每小組植樹量為2至5棵,活動(dòng)結(jié)束后,校方隨機(jī)抽查了其中50個(gè)小組,根據(jù)他們的植樹量繪制出如圖所示的兩幅不完整統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下面的問題:
(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整,并算出扇形統(tǒng)計(jì)圖中,植樹量為“5棵樹”的圓心角是 °.
(2)請(qǐng)你幫學(xué)校估算此次活動(dòng)共種多少棵樹.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,cosB=.點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿邊BA勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā),沿線段AO-OC-CB勻速運(yùn)動(dòng).點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s),△BPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖(2)中的曲線段OE、線段EF與曲線段FG.
(1)點(diǎn)Q的運(yùn)動(dòng)速度為 cm/s,點(diǎn)B的坐標(biāo)為 ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時(shí),△BPQ的面積是四邊形OABC的面積的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,以點(diǎn)為圓心, 為半徑的圓,交于點(diǎn).
(1)求證: ≌;
(2)如果, , ,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, , 是的角平分線,以為圓心, 為半徑作⊙.
()求證: 是⊙的切線.
()已知交⊙于點(diǎn),延長(zhǎng)交⊙于點(diǎn), ,求的值.
()在()的條件下,設(shè)⊙的半徑為,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(4,﹣1)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列能判定兩個(gè)三角形全等的是( 。
①三條邊對(duì)應(yīng)相等;②三個(gè)角對(duì)應(yīng)相等;③兩邊和一個(gè)角對(duì)應(yīng)相等;④兩角和它們的夾邊對(duì)應(yīng)相等;⑤兩角和一個(gè)角的對(duì)邊對(duì)應(yīng)相等.
A. ①②③ B. ①③⑤ C. ②③④ D. ①④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com