【題目】如圖,在中, , 是的角平分線,以為圓心, 為半徑作⊙.
()求證: 是⊙的切線.
()已知交⊙于點,延長交⊙于點, ,求的值.
()在()的條件下,設⊙的半徑為,求的長.
【答案】(1)證明見解析;(2);(3).
【解析】試題分析:對于(1),過O作OF⊥AB于F,由角平分線上的點到角兩邊的距離相等即可得證;
對于(2),連接CE,結合角平分線的性質和弦切角定理可證明△ACE∽△ADC,可得=tanD,即可解答;
對于(3),先由勾股定理求得AE的長,再證明△BOF∽△BAC,得,設BO=y,BF=z,列二元一次方程組即可解決問題.
試題解析:( )證明:作于,
∵是的角平分線, ,
∴,
∴是⊙的切線.
()連接,
∵是的角平分線,
∴,
∵所對的弧于所對的弧是同弧,
∴,
∴,
∴.
()設,在中,
由勾股定理得,解得,
∵, ,
∴,
∴,
設, ,
則,
即,
,
解得, .
∴.
科目:初中數學 來源: 題型:
【題目】我們知道對于x軸上的任意兩點A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標原點,若點P坐標為(1,3),則d(O,P)= ;
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(3)試求點M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與軸、軸分別交于點、,點為軸負半軸上一點, 于點交軸于點.已知拋物線經過點、、.
()求拋物線的函數式.
()連接,點在線段上方的拋物線上,連接、,若和面積滿足,求點的坐標.
()如圖, 為中點,設為線段上一點(不含端點),連接.一動點從出發(fā),沿線段以每秒個單位的速度運動到,再沿著線段以每秒個單位的速度運動到后停止.若點在整個運動過程中用時最少,請直接寫出最少時間和此時點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙與菱形在平面直角坐標系中,點的坐標為點的坐標為,點的坐標為,點在軸上,且點在點的右側.
()求菱形的周長.
()若⊙沿軸向右以每秒個單位長度的速度平移,菱形沿軸向左以每秒個單位長度的速度平移,設菱形移動的時間為(秒),當⊙與相切,且切點為的中點時,連接,求的值及的度數.
()在()的條件下,當點與所在的直線的距離為時,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區(qū)為了鼓勵市民節(jié)約用水,計劃實行生活用水按階梯式水價計費,每月用水量不超過10噸(含10噸)時,每噸按基礎價收費;每月用水量超過10噸時,超過的部分每噸按調節(jié)價收費.例如,第一個月用水16噸,需交水費17.8元,第二個月用水20噸,需交水費23元.
(1)求每噸水的基礎價和調節(jié)價;
(2)設每月用水量為x噸,應交水費為y元,寫出y與x之間的函數關系式;
(3)若某月用水12噸,應交水費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點P的坐標為(0,2),直線y= 與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC各個頂點的坐標分別是O(0,0)、A(2,0)、B(4,2)、C(2,3),過點C與軸平行的直線EF與過點B與軸平行的直線EH交于點E.
求四邊形OABC的面積;
在線段EH上是否存在點P,使四邊形OAPC的面積為7?若不存在,說明理由,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com