【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,且點(diǎn)在點(diǎn)的右側(cè).

)求菱形的周長(zhǎng).

)若⊙沿軸向右以每秒個(gè)單位長(zhǎng)度的速度平移,菱形沿軸向左以每秒個(gè)單位長(zhǎng)度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為(秒),當(dāng)⊙相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點(diǎn)所在的直線的距離為時(shí),求的值.

【答案】(1)菱形的周長(zhǎng)為8;(2) ;(3)

【解析】試題分析:(1)過點(diǎn)BBEAD,垂足為E.由點(diǎn)A和點(diǎn)B的坐標(biāo)可知:BE=,AE=1,依據(jù)勾股定理可求得AB的長(zhǎng),從而可求得菱形的周長(zhǎng);(2)記 Mx軸的切線為F,AD的中點(diǎn)為E.先求得EF的長(zhǎng),然后根據(jù)路程=時(shí)間×速度列出方程即可;平移的圖形如圖3所示:過點(diǎn)BBEAD,垂足為E,連接MF,F(xiàn) MAD的切點(diǎn).由特殊銳角三角函數(shù)值可求得∠EAB=60°,依據(jù)菱形的性質(zhì)可得到∠FAC=60°,然后證明AFM是等腰直角三角形,從而可得到∠MAF的度數(shù),故此可求得∠MAC的度數(shù);(3)如圖4所示:連接AM,過點(diǎn)作MNAC,垂足為N,作MEAD,垂足為E.先求得∠MAE=30°,依據(jù)特殊銳角三角函數(shù)值可得到AE的長(zhǎng),然后依據(jù)3t+2t=5-AE可求得t的值;如圖5所示:連接AM,過點(diǎn)作MNAC,垂足為N,作MEAD,垂足為E.依據(jù)菱形的性質(zhì)和切線長(zhǎng)定理可求得∠MAE=60°,然后依據(jù)特殊銳角三角函數(shù)值可得到EA=,最后依據(jù)3t+2t=5+AE.列方程求解即可.

試題解析:( 如圖1所示:過點(diǎn),垂足為,

, ,

,

,

∵四邊形為菱形,

,

∴菱形的周長(zhǎng)

)如圖2所示,⊙軸的切線為, 中點(diǎn)為,

,

,且中點(diǎn),

,

解得

平移的圖形如圖3所示:過點(diǎn),

垂足為,連接 為⊙切點(diǎn),

∵由()可知, ,

,

,

∵四邊形是菱形,

切線,

,

的中點(diǎn),

,

是等腰直角三角形,

)如圖4所示:連接,過點(diǎn)作,垂足為,作,垂足為,

∵四邊形為菱形, ,

是圓的切線

,

,

,

如圖5所示:連接,過點(diǎn)作,垂足為,作,垂足為

∵四邊形為菱形,

,

、是圓的切線,

,

,

,

綜上所述,當(dāng)時(shí),圓相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程4x2﹣4x+c=0有兩個(gè)相等實(shí)數(shù)根,則c的值是(
A.﹣1
B.1
C.﹣4
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若代數(shù)式3b-5a的值是2,則代數(shù)式2a-b-4b-2a-3的值等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABE是等腰三角形,AB=AE,∠BAE=45°,過點(diǎn)B作BC⊥AE于點(diǎn)C,在BC上截取CD=CE,連接AD、DE并延長(zhǎng)AD交BE于點(diǎn)P;
(1)求證:AD=BE;
(2)試說明AD平分∠BAE;
(3)如圖2,將△CDE繞著點(diǎn)C旋轉(zhuǎn)一定的角度,那么AD與BE的位置關(guān)系是否發(fā)生變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, , 的角平分線,以為圓心, 為半徑作⊙

)求證: 是⊙的切線.

)已知交⊙于點(diǎn),延長(zhǎng)交⊙于點(diǎn) ,求的值.

)在()的條件下,設(shè)⊙的半徑為,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90。 , AC<BC,D為AB的中點(diǎn),DE交AC于點(diǎn)E,DF交BC于點(diǎn)F,且DE⊥DF,過點(diǎn)A作AG//BC交FD的延長(zhǎng)線于點(diǎn)G.

(1)求證:AG=BF;
(2)若AE=4,BF=8,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A的兩邊與∠B的兩邊分別平行,∠A=50°,則∠B的度數(shù)為 ____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)(n,3)在一次函數(shù)y=2x﹣1的圖象上,則n的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若三角形的兩條邊長(zhǎng)分別為6cm和10cm,則它的第三邊長(zhǎng)不可能為 ( )

A. 5cmB. 8cmC. 10cmD. 17cm

查看答案和解析>>

同步練習(xí)冊(cè)答案