【題目】如圖,在ABC中,∠BAC=90°,AB=AC,AD是經(jīng)過A點的一條直線,且B、CAD的兩側(cè),BDADD,CEADE,交AB于點F,CE=10,BD=4,則DE的長為( 。

A. 6 B. 5 C. 4 D. 8

【答案】A

【解析】

根據(jù)∠BAC=90°,AB=AC,得到∠BAD+∠CAD=90°,由于CE⊥ADE,于是得到∠ACE+∠CAE=90°,根據(jù)余角的性質(zhì)得到∠BAD=∠ACE,推出△ABD≌△CEA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.

解:∵∠BAC=90°,AB=AC,

∴∠BAD+∠CAD=90°,

∵CE⊥ADE,

∴∠ACE+∠CAE=90°,

∴∠BAD=∠ACE,

△ABD△ACE中,

,

∴△ABD≌△CEA(AAS),

∴AE=BD=4,AD=CE=10,

∴DE=AD﹣AE=6.

故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小麗購買學習用品的收據(jù)如表,因污損導(dǎo)致部分數(shù)據(jù)無法識別,根據(jù)下表,解決下列問題:
(1)小麗買了自動鉛筆、記號筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?

商品名

單價(元)

數(shù)量(個)

金額(元)

簽字筆

3

2

6

自動鉛筆

1.5

記號筆

4

軟皮筆記本

2

9

圓規(guī)

3.5

1

合計

8

28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABC中,AB=AC,點D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過點A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.

(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個)
參考小明思考問題的方法,解答下列問題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點,E為DC的中點,點F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點D、E分別在AB、AC邊上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D沿BC自B向C運動(點D與點B、C不重合),作BE⊥AD于E,CF⊥AD于F,則BE+CF的值( 。

A.不變
B.增大
C.減小
D.先變大再變小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動點P從點A開始沿邊AB向點B以1cm/s的速度移動,動點Q從點B開始沿邊BC向點C以2cm/s的速度移動.若P,Q兩點分別從A,B兩點同時出發(fā),在運動過程中,△PBQ的最大面積是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AE=CD,AD、BE相交于點P,BQDAQ.

(1)求∠BPQ的度數(shù);

(2)PQ=3,EP=1,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.

(1)隨機地從布袋中摸出一個小球,則摸出的球為標有數(shù)字2的小球的概率為;
(2)小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內(nèi)點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內(nèi)點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某日,正在我國南海海域作業(yè)的一艘大型漁船突然發(fā)生險情,相關(guān)部門接到求救信號后,立即調(diào)遣一架直升飛機和一艘正在南海巡航的漁政船前往救援,當飛機到達海面3000m的高空C處時,測得A處漁政船的俯角為45°,測得B處發(fā)生險情漁船的俯角為30°,此時漁政船和漁船的距離AB是(

A.3000 m
B.3000( +1)m
C.3000( -1)m
D.1500 m

查看答案和解析>>

同步練習冊答案