【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,過點(diǎn)OODCB,垂足為點(diǎn)D,延長(zhǎng)DO交⊙O于點(diǎn)E,過點(diǎn)EPEAB,垂足為點(diǎn)P,作射線DPCA的延長(zhǎng)線于F點(diǎn),連接EF,

1)求證:ODOP;(2)求證:FE是⊙O的切線.

【答案】1)證明見解析;(2)證明見解析.

【解析】

試題(2)證明△POE≌△ADO可得DO=EO;

3)連接AE,BE,證出△APE≌△AFE即可得出結(jié)論.

試題解析:(1∵∠EPO=∠BDO=90° ∠EOP=∠BOD

OE=OB

∴△OPE≌△ODB

∴OD="OP"

2)連接EAEB

∴∠1=∠EBC

∵AB是直徑

∴∠AEB=∠C=90°

∴∠2+∠3=90°

∵∠3=∠DEB

∵∠BDE=90°

∴∠EBC+∠DEB=90°

∴∠2=∠EBC=∠1

∵∠C=90° ∠BDE=90°

∴CF∥OE

∴∠ODP=∠AFP

∵OD=OP

∴∠ODP=∠OPD

∵∠OPD=∠APF

∴∠AFP=∠APF

∴AF=AP AE=AE

∴△APE≌△AFE

∴∠AFE=∠APE=90°

∴∠FED=90°

∴FE⊙O的切線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某排球隊(duì)6名場(chǎng)上隊(duì)員的身高(單位:cm)是:180,184,188,190,192,194.現(xiàn)用一名身高為186cm的隊(duì)員換下場(chǎng)上身高為192cm的隊(duì)員,與換人前相比,場(chǎng)上隊(duì)員的身高( )

A. 平均數(shù)變小,中位數(shù)變小

B. 平均數(shù)變小,中位數(shù)變大

C. 平均數(shù)變大,中位數(shù)變小

D. 平均數(shù)變大,中位數(shù)變大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)EFC是直角三角形時(shí),那么BE的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,∠ABC=70°

(1)用直尺和圓規(guī)作∠ABC的平分線BDAC于點(diǎn)D(保留作圖痕跡,不要求寫作法)

(2)在(1)的條件下,∠BDC   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠A60°,AC2,DAB邊上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)AB重合),EBC邊上一點(diǎn),且∠CDE30°.設(shè)ADx,BEy,則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會(huì)嚴(yán)重影響學(xué)生對(duì)待學(xué)習(xí)的態(tài)度.為此我市教育部門對(duì)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

2)將圖補(bǔ)充完整;

3)求出圖C級(jí)所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)我市近8000名八年級(jí)學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是☉O的直徑,點(diǎn)在☉O上,過點(diǎn)C的切線與AB的延長(zhǎng)線交于點(diǎn)P,連接AC,過點(diǎn)OODAC交☉O于點(diǎn)D,連接CD.若∠A=30°,PC=6,CD的長(zhǎng)為   

A. B. C. 3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E是AD邊上的中點(diǎn),連接BE,并延長(zhǎng)BE交CD的延長(zhǎng)線于點(diǎn)F.

1)證明:FD=AB;(2)當(dāng)平行四邊形ABCD的面積為8時(shí),求△FED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一個(gè)扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為(  )

A. B. 9C. 12πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案