【題目】如圖,在△ABC中,AB=AC,D是BC上任一點,AD=AE且∠BAC=∠DAE.
(1)若ED平分∠AEC,求證:CE∥AD;
(2)若∠BAC=90°,且D在BC中點時,試判斷四邊形ADCE的形狀,并說明你的理由.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)根據等邊對等角得到∠ADE=∠AED,根據角平分線的性質得到∠DEC=∠AED,等量代換得到∠ADE=∠DEC,根據平行線的判定定理即可證明.
(2)根據∠ADC+∠DAE=180°,得到AE∥CD,再證明AE=CD,即可證明四邊形ADCE是平行四邊形,根據∠ADC=90°,AD=CD,即可證明四邊形ADCE是正方形.
解:(1)證明:∵AD=AE
∴∠ADE=∠AED
又∵ED平分∠AEC
∴∠DEC=∠AED
∴∠ADE=∠DEC
∴CE∥AD
(2)四邊形ADCE是正方形,理由如下:
∵AB=AC,D是BC的中點
∴AD⊥BC,即∠ADC=90°
又∵∠DAE=∠BAC=90°
∴∠ADC+∠DAE=180°
∴AE∥CD
又∵∠BAC=90°且D是BC的中點
∴AD=CD
∴AE=AD
∴AE=CD
∴四邊形ADCE是平行四邊形
∵∠ADC=90°,AD=CD
四邊形ADCE是正方形.
科目:初中數學 來源: 題型:
【題目】劉老師在一節(jié)習題課上出示了下面一張幻燈片
解分式方程的基本思想是“____________”,把分式方程變?yōu)檎椒匠糖蠼猓夥质椒匠桃欢ㄗ⒁庖?/span>__________.
小明同學的作業(yè)如下:
解:去分母得, (第一部)
移項,合并同類項得 (第二步)
經檢驗時, (第三步)
所以原分式方程的解為 (第四步)
解分式方程的基本思想是“____________”,把分式方程變?yōu)檎椒匠糖蠼猓夥质椒匠桃欢ㄗ⒁庖?/span>__________.
小明同學的作業(yè)如下:
解:去分母得, (第一部)
移項,合并同類項得 (第二步)
經檢驗時, (第三步)
所以原分式方程的解為 (第四步)
(1)請將幻燈片中的劃線部分填上(溫馨提示有2個空呦。
(2)小明解答過程是從第_______步開始出錯的,其錯誤原因是______________;
(3)請你寫出此題正確的解答過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B在反比例函數的圖象上,點C,D在反比例函數的圖象上,AC//BD//y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則的值為( )
A. 3 B. 4 C. 2 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.
等級 | 得分x(分) | 頻數(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
請你根據圖表中的信息完成下列問題:
1)本次抽樣調查的樣本容量是 .其中m= ,n= .
2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數;
3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數共有多少人?
4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、。┲,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P在直線AB上方,且滿足S△PABS:矩形ABCD=1:3,則使△PAB為直角三角形的點P有( )個
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】廣闊無垠的太空中有無數顆恒星,其中離太陽系最近的一顆恒星稱為“比鄰星”,它距離太陽系約4.2光年.光年是天文學中一種計量天體時空距離的長度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽系約為( )
A. 千米B. 千米C. 千米D. 千米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的半圓中,P是直徑AB上一動點,過點P作PC⊥AB于點P,交半圓于點C,連接AC.已知AB=6cm,設A,P兩點間的距離為xcm,P,C兩點間的距離為y1cm,A,C兩點間的距離為y2cm.
小聰根據學習函數的經驗,分別對函數y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小聰的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,y2與x的幾組對應值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 2.83 | 2.24 | 0 | |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點(x,y1),(x,y2),并畫出函數y1,y2的圖象;
(3)結合函數圖象,解決問題:當△APC有一個角是30°時,AP的長度約為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個工程隊原計劃修建一條長100千米的公路,由于實際情況,進行了兩次改道,每次改道以相同的百分率增加修路長度,使得實際修建長度為121千米,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數是甲工程隊單獨完成修路任務所需天數的1.5倍。
(1)求兩次改道的平均增長率;
(2)求甲、乙兩個工程隊每天各修路多少千米?
(3)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過42.4萬元,甲工程隊至少修路多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達C點、B點后運動停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數;
拓展:若△ABD的外心在其內部時,求∠BDA的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com