【題目】如圖,OA是⊙M的直徑,點(diǎn)B在x軸上,連接AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A的坐標(biāo)為(0,2),∠ABO=30°,求點(diǎn)B的坐標(biāo).
(2)若D為OB的中點(diǎn),求證:直線CD是⊙O的切線.
【答案】(1)B(2,0);(2)見(jiàn)解析
【解析】分析:(1)由點(diǎn)A的坐標(biāo)可知OA的長(zhǎng)度,根據(jù)∠ABO的度數(shù)可知AB的長(zhǎng)度為4,利用勾股定理即可求出OB的長(zhǎng)度,從而求出B的坐標(biāo).
(2)連接OC、MC、證明∠OCB為直角,根據(jù)D為OB的中點(diǎn),可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求證MC⊥CD.
詳解:(1)∵A的坐標(biāo)為(0,2)
∴OA=2,
∵∠ABO=30°,∠AOB=90°,
∴AB=2OA=4,
∴由勾股定理可知:OB=2,
∴B(2,0)
(2)連接OC,MC
∵OA是⊙M的直徑,
∴∠ACO=90°,
∴∠OCB=90°,
在Rt△OCB中,D為OB的中點(diǎn),
∴CD=OB=OD,
∴∠DCO=∠DOC,
∵MC=MO,
∴∠OCM=∠COM
∵∠MOC+∠DOC=∠AOB=90°,
∴∠MCO+∠DCO=∠MCD=90°
即MC⊥CD
∴直線CD是⊙M的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)于一個(gè)數(shù)x,我們把[x]稱作x的相伴數(shù);若x≥0,則[x]=x﹣1;若x<0,則[x]=x+1.例:[0.5]=﹣0.5.
(1)求[]、[﹣1]的值;
(2)當(dāng)a>0,b<0時(shí),有[a]=[b],試求代數(shù)式(b﹣a)3﹣3a+3b的值;
(3)解方程:[x]+[x+2]=1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為體現(xiàn)社會(huì)對(duì)教師的尊重,今年教師節(jié)出租節(jié)司機(jī)小王在東西方向的公路上免費(fèi)接送教師,如果規(guī)定向東為正,向西為負(fù),出租車的行程如下(單位:km):
+15,-4,+13,-10,-12,+3,-13,-17
(1)最后一名教師被送到目的地時(shí),小王在出發(fā)地的什么位置?
(2)若汽車耗油量為0.12L/km,小王出發(fā)前加滿了40L油,當(dāng)他送完最后一名教師后,問(wèn)他能否開(kāi)車順利返回?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,已知矩形中,點(diǎn)是邊上的一動(dòng)點(diǎn)(不與點(diǎn)、重合),過(guò)點(diǎn)作于點(diǎn),于點(diǎn),于點(diǎn),猜想線段三者之間具有怎樣的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖,若點(diǎn)在矩形的邊的延長(zhǎng)線上,過(guò)點(diǎn)作于點(diǎn),交的延長(zhǎng)線于點(diǎn),于點(diǎn),則線段三者之間具有怎樣的數(shù)量關(guān)系,直接寫(xiě)出你的結(jié)論;
(3)如圖,是正方形的對(duì)角線,在上,且,連接,點(diǎn)是上任一點(diǎn),與點(diǎn),于點(diǎn),猜想線段之間具有怎樣的數(shù)量關(guān)系,直接寫(xiě)出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩名選手參加長(zhǎng)跑比賽,乙從起點(diǎn)出發(fā)勻速跑到終點(diǎn),甲先快后慢,半個(gè)小時(shí)后找到適合自己的速度,勻速跑到終點(diǎn),他們所跑的路程y(單位:km)隨時(shí)間x(單位:h)變化的圖象,如圖所示,則下列結(jié)論錯(cuò)誤的是( )
A. 在起跑后1h內(nèi),甲在乙的前面
B. 跑到1h時(shí)甲乙的路程都為10km
C. 甲在第1.5時(shí)的路程為11km
D. 乙在第2h時(shí)的路程為20km
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O.EF過(guò)點(diǎn)O且與ABCD分別相交于點(diǎn)E,F
(1)如圖①,求證:OE=OF;
(2)如圖②,若EF⊥DB,垂足為O,求證:四邊形BEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的每個(gè)角等于90°,請(qǐng)解決下列問(wèn)題:
(1)如圖1,將兩個(gè)正方形的一個(gè)頂點(diǎn)O重合放置,若∠AOD=50°,求∠COB的度數(shù);
(2)如圖2,將三個(gè)正方形的一個(gè)頂點(diǎn)O重合放置,若∠EOC=40°,∠BOF=30°,求∠AOD的度數(shù);
(3)如圖3,將三個(gè)正方形的一個(gè)頂點(diǎn)O重合放置,若OF平分∠DOB,那么OE平分∠AOC嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x、y的方程組的解都小于1,若關(guān)于a的不等式組恰好有三個(gè)整數(shù)解;
⑴ 分別求出m與n的取值范圍;
⑵請(qǐng)化簡(jiǎn):。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車,購(gòu)買(mǎi)的數(shù)量和所需費(fèi)用如下表所示:
(1)求A型和B型公交車的單價(jià):
(2)該公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種公交車共10輛,已知每輛A型公交車年均載客量為60萬(wàn)人次,每輛B型公交車年均載客量為100萬(wàn)人次;公交公司該如何購(gòu)買(mǎi)這10輛公交車,才能確保公交車的年均載客量的總和不少于670萬(wàn)人次,且所需費(fèi)用最省,并求出最省的費(fèi)用
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com