【題目】ABCD中,對角線ACBD相交于點OEF過點O且與ABCD分別相交于點E,F

1)如圖①,求證:OE=OF;

2)如圖②,若EFDB,垂足為O,求證:四邊形BEDF是菱形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)由四邊形ABCD是平行四邊形,得到OB=OD,ABCD,根據(jù)全等三角形的性質即可得到結論;

(2)根據(jù)對角線互相平分的四邊形是平行四邊形先判定四邊形BEDF是平行四邊形,繼而根據(jù)對角線互相垂直的平行四邊形是菱形即可得結論.

(1)∵四邊形ABCD是平行四邊形,

∴OB=OD,AB∥CD,

∴∠EBO=∠FDO,

△OBE△ODF中,

∴△OBE≌△ODF(ASA),

∴OE=OF;

(2)∵OB=OD,OE=OF

四邊形BEDF是平行四邊形,

∵EF⊥BD

平行四邊形BEDF是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】O為直線AB上的一點,OCOD,射線OE平分∠AOD.

(1)如圖①,判斷∠COE和∠BOD之間的數(shù)量關系,并說明理由;

(2)若將∠COD繞點O旋轉至圖②的位置,試問(1)中∠COE和∠BOD之間的數(shù)量關系是否發(fā)生變化?并說明理由;

(3)若將∠COD繞點O旋轉至圖③的位置,探究∠COE和∠BOD之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩個工程隊分別同時開挖兩條600米長的管道,所挖管道長度(米)與挖掘時間(天)之間的關系如圖所示,則下列說法中:

①甲隊每天挖100米;②乙隊開挖兩天后,每天挖50米;③甲隊比乙隊提前1天完成任務;④當時,甲乙兩隊所挖管道長度相同,不正確的個數(shù)有(

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.

(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;

(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA是⊙M的直徑,點Bx軸上,連接AB交⊙M于點C.

(1)若點A的坐標為(0,2),ABO=30°,求點B的坐標.

(2)若DOB的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以EC、CF為鄰邊作平行四邊形ECFG

(1)如圖1,證明平行四邊形ECFG為菱形;

(2)如圖2,若∠ABC=90°,MEF的中點,求∠BDM的度數(shù);

(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8個同樣大小的小正方體搭成如圖所示的幾何體,請按照要求解答下列問題:

1)從正面、左面、上面觀察如圖所示的幾何體,分別畫出所看到的幾何體的形狀圖;

2)如果在這個幾何體上再擺放一個相同的小正方體,并保持這個幾何體從上面看和從左面看到的形狀圖不變.

①添加小正方體的方法共有_________種;

②請畫出兩種添加小正方體后,從正面看到的幾何體的形狀圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B在數(shù)軸上表示的數(shù)如圖所示. 動點P從點A出發(fā),沿數(shù)軸向右以每秒2個單位長度的速度運動到點B,再從點B以同樣的速度運動到點A停止,設點P運動的時間為t秒,解答下列問題.

1)當t=2時,AP= 個單位長度,當t=6時,AP= 個單位長度;

2)直接寫出整個運動過程中AP的長度(用含t的代數(shù)式表示);

3)當AP=6個單位長度時,求t的值;

4)當點P運動到線段AB3等分點時,t的值為 .

查看答案和解析>>

同步練習冊答案