【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).
【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標(biāo)為(,)時,△CBE的面積最大.
【解析】
試題分析:(1)由直線解析式可求得B、C坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;
(2)由拋物線解析式可求得P點坐標(biāo)及對稱軸,可設(shè)出M點坐標(biāo),表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關(guān)于M點坐標(biāo)的方程,可求得M點的坐標(biāo);
(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設(shè)出E點坐標(biāo),表示出F點的坐標(biāo),表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標(biāo).
試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,
∴B(3,0),C(0,3),
把B、C坐標(biāo)代入拋物線解析式可得 ,解得,
∴拋物線解析式為y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線對稱軸為x=2,P(2,﹣1),
設(shè)M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM為等腰三角形,
∴有MC=MP、MC=PC和MP=PC三種情況,
①當(dāng)MC=MP時,則有=|t+1|,解得t=,此時M(2,);
②當(dāng)MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);
③當(dāng)MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);
綜上可知存在滿足條件的點M,其坐標(biāo)為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,
設(shè)E(x,x2﹣4x+3),則F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=EFOD+EFBD=EFOB=×3(﹣x2+3x)=﹣(x﹣)2+,
∴當(dāng)x=時,△CBE的面積最大,此時E點坐標(biāo)為(,),
即當(dāng)E點坐標(biāo)為(,)時,△CBE的面積最大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建成學(xué)校舉行美化綠化校園活動,九年級計劃購買,兩種花木共100棵綠化操場,其中花木每棵50元,花木每棵100元.
(1)若購進,兩種花木剛好用去8000元,則購買了兩種花木各多少棵?
(2)如果購買花木的數(shù)量不少于花木的數(shù)量,請設(shè)計一種購買方案使所需總費用最低,并求出該購買方案所需總費用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程:.
(1)求證:對于任意實數(shù),方程都有實數(shù)根;
(2)當(dāng)為何值時,方程的兩個根互為相反數(shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為5cm,點A到圓心O的距離OA=3cm,則點A與圓O的位置關(guān)系為( 。
A.點A在圓上
B.點A在圓內(nèi)
C.點A在圓外
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明統(tǒng)計了最近一周王奶奶平均每天賣出的雪糕的五個牌子:A、B、C、D、E雪糕的數(shù)量,具體數(shù)據(jù)如下:A:133,B:182,C:68,D:39,E:98,則B種雪糕出現(xiàn)的頻數(shù)是( )
A. 5 B. 520
C. 182 D. 133
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?
(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com