【題目】如圖,菱形OABCA點的坐標(biāo)為(5,0),對角線OB、AC相交于D點,雙曲線yx0)經(jīng)過D點,交BC的延長線于E點,交ABF點,連接OFACM,且OBAC40.有下列四個結(jié)論:①k8;②CE1;③AC+OB6;④SAFMSAOM13.其中正確的結(jié)論是(  )

A. ①②B. ①③C. ①②③D. ①②③④

【答案】D

【解析】

首先過點DDHx軸于點H,由菱形OABC中,ACOB=40,可求得菱形OABC的面積,繼而求得△AOD的面積,則可求得高DH,然后由射影定理,可得DH2=OHAH,繼而求得①正確;過CCGx軸于點G,根據(jù)平行線等分線段定理和三角形的中位線的性質(zhì)得到CG=2DH=4,AG=2AH=2,求得C34),E2,4),于是得到CE=1,故②正確;根據(jù)勾股定理得到AC+OB=6;故③正確;過FFNx軸于點N,設(shè)FN=4xAN=3x,根據(jù)三角形的面積公式得到x=,根據(jù)相似三角形的性質(zhì)得到,于是得到SAFMSAOM=13,故④正確.

解:過點DDHx軸于點H,

∵菱形OABC中,ACOB40

S菱形OABCACOB20,

SOADS菱形OABC5,

SOADOADH,且OA5,

DH2,

DH2OHAH4OH+AH5,

OH4,AH1

∴點D4,2),

k4×28.故①正確;

CCGx軸于點G

DHCG,

ADCD,

CG2DH4AG2AH2,

OG3

C3,4),

E24),

CE1,故②正確;

CG4AG2,

AC2,

DH2OH4,

OD2,

OB4

AC+OB6;故③正確;

FFNx軸于點N

OCAB,

∴∠COG=∠FAN,

tanCOGtanFAN,

設(shè)FN4xAN3x,

SOFN5+3x)×4x4,

x

FN,AN1,

∵△OCG∽△AFN

3,

OCAF

∴△AMF∽△CMO,

3,

SAFMSAOM13,故④正確,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有2個完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個完全相同的小球,分別標(biāo)有數(shù)字-2,01,小明從甲袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點Q的坐標(biāo)(xy)

1寫出點Q所有可能的坐標(biāo);

2求點Qx軸上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知A(2,0),B(1,-1),將線段OA繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<135°).記點A的對應(yīng)點為A1,若點A1與點B的距離為,則( ).

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為了解學(xué)生一學(xué)期做義工的時間情況,對全班50名學(xué)生進(jìn)行調(diào)查,按做義工的時間(單位:小時),將學(xué)生分成五類: 類( ),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.

根據(jù)以上信息,解答下列問題:

1 類學(xué)生有 人,補(bǔ)全條形統(tǒng)計圖;

2類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;

(3)從該班做義工時間在的學(xué)生中任選2人,求這2人做義工時間都在 中的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,AB的正東方向,有一艘小船停在點PA測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測站之間的距離;

(2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點A、B,再將△A0B沿直錢CD折疊,使點A與點B重合.折痕CD與x軸交于點C,與AB交于點D.

(1)點A的坐標(biāo)為  ;點B的坐標(biāo)為  ;

(2)求OC的長度,并求出此時直線BC的表達(dá)式;

(3)直線BC上是否存在一點M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC為⊙O的直徑,以BC為直角邊作RtABC,∠ACB=90°,斜邊AB與⊙O交于點D,過點D作⊙O的切線DEAC于點E,DGBC于點F,交⊙O于點G

1)求證:AE=CE

2)若AD=4,AE=,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,點的中點,連接并延長,交的延長線于點.

1)求證:.

2)連接,當(dāng)______時,四邊形是正方形.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案