【題目】如圖,在一筆直的海岸線上有A,B兩個(gè)觀測站,A在B的正東方向,有一艘小船停在點(diǎn)P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.
(1)求A、B兩觀測站之間的距離;
(2)小船從點(diǎn)P處沿射線AP的方向前行,求觀測站B與小船的最短距離.
【答案】(1)6+6(2)3+3
【解析】
(1)過點(diǎn)P作PD⊥AB于點(diǎn)D,先解Rt△PBD,得到BD和PD的長,再解Rt△PAD,得到AD和AP的長,然后根據(jù)BD+AD=AB,即可求解; (2)過點(diǎn)B作BF⊥AC于點(diǎn)F,解直角三角形即可得到結(jié)論.
(1)如圖,過點(diǎn)P作PD⊥AB于點(diǎn)D.
在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,
∴BD=PD=6km.
在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,
∴AD=PD=6km,PA=12.
∴AB=BD+AD=(6+6)km;
(2)如圖,過點(diǎn)B作BF⊥AC于點(diǎn)F,
則∠BAP=30°,
∵AB=(6+6),
∴BF=AB=(3+3)km.
∴觀測站B到射線AP的最短距離為(3+3)km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:關(guān)于三角函數(shù)還有如下的公式:
Sin(α±β)=sinαcosβ±cosαsinβ ; tan(α±β)=
利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值
例:tan15°=tan(45°30°)==
根據(jù)以上閱讀材料,請選擇適當(dāng)?shù)墓酱鸢赶旅娴膯栴}
(1)計(jì)算sin15°;
(2)棲靈塔是揚(yáng)州市標(biāo)志性建筑之一(如圖),小明想利用所學(xué)的數(shù)學(xué)知識來測量該塔的高度,小華站在離塔底A距離7米的C處,測得塔頂?shù)难鼋菫?/span>75°,小華的眼睛離地面的距離DC為1.62米,請幫助小華求出該信號塔的高度.(精確到0.1米,參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 :y=ax2 過點(diǎn)(2,2)
(1)直接寫出拋物線的解析式;
(2)如圖,△ABC 的三個(gè)頂點(diǎn)都在拋物線 上,且邊 AC 所在的直線解析式為y=x+b,若 AC 邊上的中線 BD 平行于 y 軸,求的值;
(3)如圖,點(diǎn) P 的坐標(biāo)為(0,2),點(diǎn) Q 為拋物線上 上一動點(diǎn),以 PQ 為直徑作⊙M,直線 y=t 與⊙M 相交于 H、K 兩點(diǎn)是否存在實(shí)數(shù) t,使得 HK 的長度為定值?若存在,求出 HK 的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊三角形空地上種草皮綠化,已知AB=20米,AC=30米,∠A=150°,草皮的售價(jià)為a元/米2,則購買草皮至少需要( )
A. 450a元 B. 225a元 C. 150a元 D. 300a元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3)、點(diǎn)B(3,0),一次函數(shù)y=﹣2x的圖象與直線AB交于點(diǎn)P.
(1)求P點(diǎn)的坐標(biāo).
(2)若點(diǎn)Q是x軸上一點(diǎn),且△PQB的面積為6,求點(diǎn)Q的坐標(biāo).
(3)若直線y=﹣2x+m與△AOB三條邊只有兩個(gè)公共點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).
(1)以O為中心作出△ABC的中心對稱圖形△A1B1C1,并寫出點(diǎn)B1坐標(biāo);
(2)以格點(diǎn)P為旋轉(zhuǎn)中心,將△ABC按順時(shí)針方向旋轉(zhuǎn)90°,得到△A′B′C′,且使點(diǎn)A的對應(yīng)點(diǎn)A′的恰好落在△A1B1C1的內(nèi)部格點(diǎn)上(不含△A1B1C1的邊上),寫出點(diǎn)P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校要開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計(jì)圖.
請你根據(jù)圖中信息,回答下列問題:
(1)本次共調(diào)查了 名學(xué)生.
(2)在扇形統(tǒng)計(jì)圖中,“歌曲”所在扇形的圓心角等于 度.
(3)補(bǔ)全條形統(tǒng)計(jì)圖(標(biāo)注頻數(shù)).
(4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛小品的人數(shù)為 人.
(5)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個(gè)班級的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣4=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為正整數(shù),且該方程的兩個(gè)根都是整數(shù),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com