如圖,⊙O為△ABC的外接圓,∠A=72°,則∠BCO的度數(shù)為( 。
A.15° B.18° C.20° D.28°
B【考點(diǎn)】圓周角定理.
【專題】計(jì)算題.
【分析】連結(jié)OB,如圖,先根據(jù)圓周角定理得到∠BOC=2∠A=144°,然后根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理計(jì)算∠BCO的度數(shù).
【解答】解:連結(jié)OB,如圖,∠BOC=2∠A=2×72°=144°,
∵OB=OC,
∴∠CBO=∠BCO,
∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.
故選B.
【點(diǎn)評】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了等腰三角形的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,則以下結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上.正確的是( 。
A.① B.② C.①② D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線y=ax2+bx+3交x軸于A、B兩點(diǎn)(A在B左邊),交y軸于C點(diǎn),且OC=3OA,對稱軸x=1交拋物線于D點(diǎn).
(1)求拋物線解析式;
(2)在直線BC上方的拋物線上找點(diǎn)E使S△BCD=S△BCE,求E點(diǎn)的坐標(biāo);
(3)在x軸上方的拋物線上,是否存在點(diǎn)M,過M作MN⊥x軸于N點(diǎn),使△BMN與△BCD相似?若存在,請求出M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)如圖1,請你寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系(不必證明);
(2)將△EFP沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)O,連接AP,BO.猜想并寫出BO與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,把Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)40°,得到Rt△AB′C′,點(diǎn)C′恰好落在邊AB上,連接BB′,則∠BB′C′= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
反比例函數(shù)的圖象與一次函數(shù)y=2x+1的圖象的一個(gè)交點(diǎn)是(1,k),則反比例函數(shù)的解析式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某人沿著有一定坡度的坡面前進(jìn)了10米,此時(shí)他與水平地面的垂直距離為2米,則這個(gè)坡面的坡度為( 。
A.1:2 B.1:3 C.1: D.:1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com