精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2)延長CBx軸于點A1,作正方形A1B1C1C;延長C1B1x 軸于點A2,作正方形A2B2C2C1,按這樣的規(guī)律進行下去,第2018個正方形的面積為_____

【答案】2017

【解析】

根據勾股定理求出AB,證明ABA1∽△DOA,根據相似三角形的性質求出A1B,計算求出A1C,根據正方形的面積公式求出正方形A1B1C1C的面積,總結規(guī)律,根據規(guī)律計算即可.

∵點A的坐標為(10),點D的坐標為(0,2),

OA=1OD=2,

∵∠AOD=90°

AB=AD==,∠ODA+OAD=90°,

∵四邊形ABCD是正方形,

∴∠BAD=ABC=90°,S正方形ABCD=5,

∴∠ABA1=90°,∠OAD+BAA1=90°,

∴∠ODA=BAA1,

RtABA1RtDOA

,即,

解得,A1B=,

A1C=,

則正方形A1B1C1C的面積=2=5×,

同理,正方形A2B2C2C1的面積=5×2,

則第2018個正方形的面積為2017,

故答案為:2017

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在RtABC中,∠C90°,AC8cmBC6cm,點PB出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點QA出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為ts)(0t4),解答下列問題:

1)當t為何值時,PQBC

2)設△AQP的面積為ycm2),求yt之間的函數關系式;

3)是否存在某一時刻t,使線段PQ恰好把RtACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;

4)如圖,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,那么是否存在某一時刻t,使四邊形PQPC為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點都在網格線交點處的三角形, 是一個格點三角形.

在圖中,請判斷是否相似,并說明理由;

在圖中,以O為位似中心,再畫一個格點三角形,使它與的位似比為21

在圖中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖ABCD的對角線相交于點O,點E在邊BC的延長線上,且OE=OB,連接DE

1求證:DEBE;

2如果OECD,求證:BD·CE=CD·DE

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,EOB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.

(1)求證:直線BF是⊙O的切線;

(2)若OB=2,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AMABC的中線,點D是線段AM上一點(不與點A重合).過點DKDAB,交BC于點K,過點CCEAM,交KD的延長線于點E,連接AE、BD

1)求證:ABM∽△EKC;

2)求證:ABCKEKCM;

3)判斷線段BD、AE的關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,A14)、B3,1)、C9,7)、D13,1),若以CD為邊的三角形與OAB位似,則這兩個三角形的位似中心為( 。

A. (0,0) B. (3,4)或(﹣6,2

C. (5,3)或(-7,1 D. 不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對稱軸與y2交于點A(﹣1,5),點A與y1的頂點B的距離是4.

(1)求y1的解析式;

(2)若y2隨著x的增大而增大,且y1與y2都經過x軸上的同一點,求y2的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC在網格中的位置如圖所示(每個小正方形邊長為1),ADBCD,下列選項中,錯誤的是(  )

A. sinαcosα B. tanC2 C. sinβ D. tanα1

查看答案和解析>>

同步練習冊答案