【題目】如圖,正方形ABCD繞著點(diǎn)A順時針旋轉(zhuǎn)到正方形AEFG,連接CF、DE、GB,若DE=6,GB=4,則五邊形AEFCD的面積為_____.
【答案】18
【解析】
過點(diǎn)E作DE的垂線,與DG的延長線相交于點(diǎn)K,設(shè)DK與CF相交于點(diǎn)M,證明△AED≌△FEK和△CDM≌△FKM,可得五邊形AEFCD的面積=S△DEK,即可得出五邊形AEFCD的面積.
解:如圖,過點(diǎn)E作DE的垂線,與DG的延長線相交于點(diǎn)K,設(shè)DK與CF相交于點(diǎn)M,
∵正方形ABCD繞著點(diǎn)A順時針旋轉(zhuǎn)到正方形AEFG,
∴AD=AG,
∴∠ADG=∠AGD=x,
∴∠DAG=180°-2x,
∵∠GAE=90°,DA=AB=AE,
∴∠DAE=270°-2x,
∴∠ADE=∠AED=[180°-(270°-2x)]÷2=x-45°,
∴∠GDE=x-(x-45°)=45°,
∴∠KDE=∠DKE=45°,
∴DE=KE,
∵AE=EF,∠DEK=∠AEF=90°,
∴∠AED=∠FEK,∠ADE=∠FKE,
∴△AED≌△FEK(SAS),
∴FK=AD=DC,
∵∠CDM=90°-45°-∠ADE=45°-∠ADE,∠FKM=45°-∠FKE,
∴∠CDM=∠FKM,
∵∠CMD=∠FMK,
∴△CDM≌△FKM(AAS),
∴五邊形AEFCD的面積=S△DEK=×6×6=18.
故答案為:18.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=a(x+)(x﹣3)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)M的縱坐標(biāo)為-4.
(1)求出二次函數(shù)的解析式;
(2)如圖1,若過點(diǎn)M作直線MN∥y軸,點(diǎn)P是直線MN上的一個動點(diǎn),當(dāng)PA+PC最小時,求點(diǎn)P的坐標(biāo).
(3)如圖2,連結(jié)BC,在直線BC下方的拋物線上有一動點(diǎn)E,求△BCE面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點(diǎn),且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等邊三角形,BD是中線,延長BC至E,使CE=CD.
(1)直接寫出= ;
(2)將圖1中的△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)到如圖2所示位置,連接AE,P為AE的中點(diǎn),連接PD,PC,探究線段PD與PC之間的關(guān)系;
(3)將圖1中的△BDE繞點(diǎn)B順時針旋轉(zhuǎn),使點(diǎn)D落在線段BC上,連接AE,P為AE中點(diǎn),連接PD.如圖3,若AB=2,請直接寫出PD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠ABC=90°,AB=BC=4,點(diǎn)O是邊AC的中點(diǎn),連接OB,將△AOB繞點(diǎn)A順時針旋轉(zhuǎn)α°至△ANM,連接CM,點(diǎn)P是線段CM的中點(diǎn),連接PB,PN.
(1)如圖1,當(dāng)α=180時,請直接寫出線段PN和PB之間滿足的位置和數(shù)量關(guān)系;
(2)如圖2,當(dāng)0<α<180時,請?zhí)剿骶段PN和PB之間滿足何位置和數(shù)量關(guān)系?證明你的結(jié)論
(3)當(dāng)△AOB旋轉(zhuǎn)至C,M,N三點(diǎn)共線時,線段BP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,⊙O是四邊形ABCD的外接圓,連接OC交對角線BD于點(diǎn)F,延長AO交BD于點(diǎn)E,OE=OF.
(1)求證:BE=FD;
(2)如圖2,若∠EOF=90°,BE=EF,⊙O的半徑,求四邊形ABCD的面積;
(3)如圖3,若AD=BC;
①求證:;②若,直接寫出CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計劃購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請你估計該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年某縣投入200萬元用于農(nóng)村“扶貧工程”,計劃以后每年以相同的增長率投入,2018年該縣計劃投入“扶貧工程”338萬元.
(1)求該縣投入“扶貧工程”的年平均增長率.
(2)從2016年到2018年,該縣三年共投入“扶貧工程”多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com