【題目】如圖,在ABCADE中,點(diǎn)EBC邊上,∠B=D,AB=AD,∠BAD=CAE,

1)求證:AE=AC

2)若∠AEC=60°,將ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與ABC重合,則這個(gè)旋轉(zhuǎn)角的度數(shù)__

3)若AC=4,BC=7,∠AEC=60°,求ABE的面積.

【答案】1)證明見解析;(260° ;(33

【解析】

1)先由∠BAD=CAE得出∠BAC=DAE,再根據(jù)“ASA”證明ADE≌△ABC,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得出AE=AC;

2)由(1)知AE=AC,結(jié)合∠AEC=60°,進(jìn)而得出AEC是等邊三角形,故可得出旋轉(zhuǎn)角;

3)首先得出BE的長(zhǎng),再求出ABE的高,即可得出答案.

1)證明:∵∠BAD=CAE

∴∠CAE+EAB=BAD+EAB,

即∠CAB=EAD,

ADEABC中,

,

∴△ADE≌△ABCASA),

AE=AC

2)由(1)知:AE=AC,

∵∠AEC=60°,

∴△AEC是等邊三角形,

∴∠EAC=60°,

∴旋轉(zhuǎn)角的度數(shù)為60°;

故答案為:60°

2)過點(diǎn)AAFBC于點(diǎn)F,

由(1)可得:AEC是等邊三角形,

EC=AC=4,CF=

BE=BC-EC=7-4=3,AF=,

ABE的面積為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù))在同一直角坐標(biāo)系中的大致圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,4),過點(diǎn)AABy軸,垂足為B,連接OA.

(1)OAB的面積;

(2)若拋物線y=-x2-2x+c經(jīng)過點(diǎn)A.

①求c的值;

②將拋物線向下平移m個(gè)單位長(zhǎng)度,使平移后得到的拋物線頂點(diǎn)落在OAB的內(nèi)部(不包括OAB的邊界),求m的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)中,ABCADE都是等腰直角三角形,∠ACB和∠D都是直角,點(diǎn)CAE上,ABC繞著A點(diǎn)經(jīng)過逆時(shí)針旋轉(zhuǎn)后能夠與ADE重合,再將圖(1)作為“基本圖形”繞著A點(diǎn)經(jīng)過逆時(shí)針旋轉(zhuǎn)得到圖(2).兩次旋轉(zhuǎn)的角度分別為(

A.45°,90°B.90°,45°C.60°,30°D.30°,60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1

2)(-2+(-1)-(-2)-(-4

3)(+

4×0.125××

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格(小正方形的邊長(zhǎng)為1,小正方形的頂點(diǎn)叫格點(diǎn)),請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(2,4)B點(diǎn)坐標(biāo)為(4,2);

(2)(1)中的直角坐標(biāo)系在第二象限內(nèi)的格點(diǎn)上找點(diǎn)C(C點(diǎn)的橫坐標(biāo)大于-3),使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,則C點(diǎn)坐標(biāo)是______,△ABC的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(-1,0),對(duì)稱軸為直線x=2,下列結(jié)論:①拋物線與x軸的另一個(gè)交點(diǎn)是(5,0);②4a+c>2b;③4a+b=0;④當(dāng)x>-1時(shí),y的值隨x值的增大而增大.其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC,使BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OBCOE= °;

(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,OE恰好平分AOC,請(qǐng)說明OD所在射線是BOC的平分線

(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好COD= AOE,BOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為2,正方形內(nèi)有一動(dòng)點(diǎn)P,求點(diǎn)P到三個(gè)頂點(diǎn)A、B、C的距離之和的最小值( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案