【題目】(1)如圖1,矩形ABCD是由兩個(gè)邊長(zhǎng)為1的正方形構(gòu)成.請(qǐng)你剪兩刀后拼成一個(gè)與矩形ABCD面積相等的正方形.
(2)如圖2,矩形EFGH的長(zhǎng)FG為6,寬EF為4,用剪刀剪兩次,然后將其拼接成一個(gè)與矩形EFGH面積相等的正方形,畫(huà)出裁剪線及拼接后的圖形,簡(jiǎn)要說(shuō)明裁剪線是如何確定的.如果你沒(méi)有想到好方法,不用急,請(qǐng)沉著應(yīng)對(duì).細(xì)讀下列數(shù)學(xué)事實(shí)或許對(duì)你解決有幫助.
(3)如圖3,在⊙O中,MN為直徑,PQ⊥MN,垂足為點(diǎn)Q,交⊙O于點(diǎn)P,連結(jié)PM、PN.易證明PQ2=MQNQ.此結(jié)論可直接運(yùn)用.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】
(1)如圖1所示,分別沿AE,DE各剪一刀,即可拼成與原矩形面積相等的正方形AEDF;
(2)如圖2﹣1,延長(zhǎng)GF至M,使MF=EF=4,作以MG為直徑的圓,延長(zhǎng)FE交圓于點(diǎn)N,由可知NF2=MFGF=EFGF=24,如圖2﹣2,以F為圓心,FN為半徑作圓,交矩形EH邊于點(diǎn)Q,過(guò)G作GK⊥FQ于點(diǎn)K,沿FQ,GK剪開(kāi)后可拼成正方形KGPO,且S正方形KGPO=24.
(1)如圖1所示,分別沿AE,DE各剪一刀,即可拼成與原矩形面積相等的正方形AEDF;
(2)如圖2﹣1,延長(zhǎng)GF至M,使MF=EF=4,作以MG為直徑的圓,延長(zhǎng)FE交圓于點(diǎn)N,
∴∠MNG=90°
∴∠GNF+∠MNF=90°,
∵∠NFM=90°,
∴∠NMF+∠MNF=90°,
∴∠NMF=∠GNF,
又∠NFM=∠NFG,
∴
∴
即NF2=MFGF=EFGF=24,
∴S正方形=S矩形=24,
如圖2﹣2,以F為圓心,FN為半徑作圓,交矩形EH邊于點(diǎn)Q,過(guò)G作GK⊥FQ于點(diǎn)K,
沿FQ,GK剪開(kāi)后可拼成正方形KGPO,且S正方形KGPO=24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A(﹣5,0),B(﹣3,0)點(diǎn)C在y的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°,點(diǎn)P從點(diǎn)A出發(fā),沿x軸向右以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)時(shí)t=1,求PC的長(zhǎng);
(2)當(dāng)∠BCP=15°時(shí),求t的值;
(3)以線段PC為直徑的⊙Q隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙Q與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】家庭過(guò)期藥品屬于“國(guó)家危險(xiǎn)廢物”,處理不當(dāng)將污染環(huán)境,危害健康.某市藥監(jiān)部門(mén)為了解市民家庭處理過(guò)期藥品的方式,決定對(duì)全市家庭作一次簡(jiǎn)單隨機(jī)抽樣調(diào)査.
(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號(hào))
①在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽;②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽。③在全市常住人口中以家庭為單位隨機(jī)抽。
(2)本次抽樣調(diào)査發(fā)現(xiàn),接受調(diào)査的家庭都有過(guò)期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:
①m= ,n= ;
②補(bǔ)全條形統(tǒng)計(jì)圖;
③扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù)是 ;
④家庭過(guò)期藥品的正確處理方式是送回收點(diǎn),若該市有180萬(wàn)戶家庭,請(qǐng)估計(jì)大約有多少戶家庭處理過(guò)期藥品的方式是送回收點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)某體育用品專(zhuān)賣(mài)店銷(xiāo)售7個(gè)籃球和9個(gè)排球的總利潤(rùn)為355元,銷(xiāo)售10個(gè)籃球和20個(gè)排球的總利潤(rùn)為650元.
(1)求每個(gè)籃球和每個(gè)排球的銷(xiāo)售利潤(rùn);
(2)已知每個(gè)籃球的進(jìn)價(jià)為200元,每個(gè)排球的進(jìn)價(jià)為160元,若該專(zhuān)賣(mài)店計(jì)劃用不超過(guò)17400元購(gòu)進(jìn)籃球和排球共100個(gè),且要求籃球數(shù)量不少于排球數(shù)量的一半,請(qǐng)你為專(zhuān)賣(mài)店設(shè)計(jì)符合要求的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)國(guó)務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房的建設(shè)力度,2011年市政府共投資2億元人民幣建設(shè)了廉租房8萬(wàn)平方米,預(yù)計(jì)到2013年底三年共累計(jì)投資9.5億元人民幣建設(shè)廉租房,若在這兩年內(nèi)每年投資的增長(zhǎng)率相同.
(1)求每年市政府投資的增長(zhǎng)率;
(2)若這兩年內(nèi)的建設(shè)成本不變,求到2013年底共建設(shè)了多少萬(wàn)平方米廉租房.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC為⊙O的直徑,MN為⊙O的切線,點(diǎn)D為切點(diǎn),連結(jié)AD.直線MN與直線AC交于點(diǎn)B,過(guò)點(diǎn)A作AE⊥MN,垂足為E.
(1)求證:AD平分∠EAB.
(2)求證:AD2=AGAB.
(3)若AE=6,BE=8,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,D是BC邊上一點(diǎn),∠BAD=45°,AC=3,AB=,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為直線x=的拋物線經(jīng)過(guò)點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以OA為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com