【題目】如圖,在RtABC中,∠C90°,DBC邊上一點(diǎn),∠BAD45°AC3,AB,求BD的長(zhǎng).

【答案】BD的長(zhǎng)是5

【解析】

DDEAB于點(diǎn)E,設(shè)DEa,用a表示出AE、BE,在RtABCRtBDE中分別表示出tanABC,從而列出方程,解方程后即可求出BE、DE的長(zhǎng),然后用勾股定理即可求出BD.

解:過DDEAB于點(diǎn)E,如圖所示,

∵∠BAD45°,

∴∠EAD=∠EDA45°,

AEDE

設(shè)DEa,則BEABAEa

AC3,AB,∠C90°,

BC=,

,

a=,

經(jīng)檢驗(yàn),a=是上面方程的解.

DE=BE=2

RtBED中,由勾股定理得:

BD2BE2+DE2=,

BD5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn),給出如下定義:若,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.

例如,點(diǎn)的“可控變點(diǎn)”為點(diǎn),點(diǎn)的“可控變點(diǎn)”為點(diǎn)

1)點(diǎn)的“可控變點(diǎn)”坐標(biāo)為   ;

2)若點(diǎn)P在函數(shù)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)7,求“可控變點(diǎn)” Q的橫坐標(biāo);

3)若點(diǎn)P在函數(shù)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)的取值范圍是,直接寫出實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,矩形ABCD是由兩個(gè)邊長(zhǎng)為1的正方形構(gòu)成.請(qǐng)你剪兩刀后拼成一個(gè)與矩形ABCD面積相等的正方形.

2)如圖2,矩形EFGH的長(zhǎng)FG6,寬EF4,用剪刀剪兩次,然后將其拼接成一個(gè)與矩形EFGH面積相等的正方形,畫出裁剪線及拼接后的圖形,簡(jiǎn)要說明裁剪線是如何確定的.如果你沒有想到好方法,不用急,請(qǐng)沉著應(yīng)對(duì).細(xì)讀下列數(shù)學(xué)事實(shí)或許對(duì)你解決有幫助.

3)如圖3,在⊙O中,MN為直徑,PQMN,垂足為點(diǎn)Q,交⊙O于點(diǎn)P,連結(jié)PM、PN.易證明PQ2MQNQ.此結(jié)論可直接運(yùn)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求不等式(2x﹣1)(x+3)>0的解集.

解:根據(jù)“同號(hào)兩數(shù)相乘,積為正”可得:①或 ②

解①得x>;解②得x<﹣3.

∴不等式的解集為x>或x<﹣3.

請(qǐng)你仿照上述方法解決下列問題:

(1)求不等式(2x﹣3)(x+1)<0的解集.

(2)求不等式≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABC的直角邊AB為直徑作半圓⊙O與邊BC交于點(diǎn)D,過D作半圓的切線與邊AC交于點(diǎn)E,過EEFAB,與BC交于點(diǎn)F.若AB20OF7.5,則CD的長(zhǎng)為( 。

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點(diǎn)是正方形ABCD的邊BC上一點(diǎn),AB=12,BE=5,△ABE逆時(shí)針旋轉(zhuǎn)后能夠與△ADF重合.

1)旋轉(zhuǎn)中心是 ,旋轉(zhuǎn)角為 度;

2△AEF 三角形;

3)求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】馬航事件的發(fā)生引起了我國(guó)政府的高度重視,我國(guó)政府迅速派出了艦船和飛機(jī)到相關(guān)海域進(jìn)行搜尋.如圖,在一次空中搜尋中,水平飛行的飛機(jī)在點(diǎn)A處測(cè)得前方海面的點(diǎn)F處有疑似飛機(jī)殘骸的物體(該物體視為靜止),此時(shí)的俯角為30°.為了便于觀察,飛機(jī)繼續(xù)向前飛行了800m到達(dá)B點(diǎn),此時(shí)測(cè)得點(diǎn)F的俯角為45°.請(qǐng)你計(jì)算當(dāng)飛機(jī)飛臨F點(diǎn)的正上方點(diǎn)C時(shí)(點(diǎn)A,B,C在同一直線上),豎直高度CF約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點(diǎn)D在線段BC上運(yùn)動(dòng).試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC4,BC3,CDx,求線段CP的長(zhǎng).(用含x的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案