【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)和,給出如下定義:若,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.
例如,點(diǎn)的“可控變點(diǎn)”為點(diǎn),點(diǎn)的“可控變點(diǎn)”為點(diǎn).
(1)點(diǎn)的“可控變點(diǎn)”坐標(biāo)為 ;
(2)若點(diǎn)P在函數(shù)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)是7,求“可控變點(diǎn)” Q的橫坐標(biāo);
(3)若點(diǎn)P在函數(shù)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)的取值范圍是,直接寫出實(shí)數(shù)a的值.
【答案】(1)(﹣5,2);(2)或3;(3)
【解析】
(1)根據(jù)可控變點(diǎn)的定義,可得答案;
(2)根據(jù)可控變點(diǎn)的定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案;
(3)根據(jù)可控變點(diǎn)的定義,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案.
解:(1)∵-5<0,
∴y'=-y=2,
即點(diǎn)(-5,-2)的“可控變點(diǎn)”坐標(biāo)為(-5,2)
∴點(diǎn)M坐標(biāo)為(﹣5,2).
(2)依題意,圖象上的點(diǎn)P的“可控變點(diǎn)”必在函數(shù)
的圖象上.
∵“可控變點(diǎn)”Q的縱坐標(biāo)y′是7,
∴當(dāng),解得:,
當(dāng),解得:
綜上所述,點(diǎn)Q的橫坐標(biāo)為或3.
(3)依題意,圖象上的點(diǎn)P的“可控變點(diǎn)”必在函數(shù)
的圖象上(如圖).
∵,
∴.
∴.
∴由題意可知,a的值是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(﹣5,0),B(﹣3,0)點(diǎn)C在y的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°,點(diǎn)P從點(diǎn)A出發(fā),沿x軸向右以每秒1個(gè)單位長度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)時(shí)t=1,求PC的長;
(2)當(dāng)∠BCP=15°時(shí),求t的值;
(3)以線段PC為直徑的⊙Q隨點(diǎn)P的運(yùn)動(dòng)而變化,當(dāng)⊙Q與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2k-1)x+k2-1=0有兩個(gè)實(shí)數(shù)根x1,x2.
(1)求實(shí)數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,每個(gè)小正方形的邊長為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).三角形ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,以點(diǎn)A為圓心的弧EF與BC相切于格點(diǎn)D,分別交AB,AC于點(diǎn)E,F.
(1)直接寫出三角形ABC邊長AB= ;AC= ;BC= .
(2)求圖中由線段EB,BC,CF及弧FE所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標(biāo)上1、2、3,將這兩組卡片分別放入兩個(gè)盒子中攪勻,再從中隨機(jī)抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家庭過期藥品屬于“國家危險(xiǎn)廢物”,處理不當(dāng)將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對(duì)全市家庭作一次簡單隨機(jī)抽樣調(diào)査.
(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號(hào))
①在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽;②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽。③在全市常住人口中以家庭為單位隨機(jī)抽。
(2)本次抽樣調(diào)査發(fā)現(xiàn),接受調(diào)査的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:
①m= ,n= ;
②補(bǔ)全條形統(tǒng)計(jì)圖;
③扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù)是 ;
④家庭過期藥品的正確處理方式是送回收點(diǎn),若該市有180萬戶家庭,請(qǐng)估計(jì)大約有多少戶家庭處理過期藥品的方式是送回收點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某體育用品專賣店銷售7個(gè)籃球和9個(gè)排球的總利潤為355元,銷售10個(gè)籃球和20個(gè)排球的總利潤為650元.
(1)求每個(gè)籃球和每個(gè)排球的銷售利潤;
(2)已知每個(gè)籃球的進(jìn)價(jià)為200元,每個(gè)排球的進(jìn)價(jià)為160元,若該專賣店計(jì)劃用不超過17400元購進(jìn)籃球和排球共100個(gè),且要求籃球數(shù)量不少于排球數(shù)量的一半,請(qǐng)你為專賣店設(shè)計(jì)符合要求的進(jìn)貨方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com