【題目】拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對應(yīng)值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)試確定該拋物線的對稱軸及當(dāng)時(shí)對應(yīng)的函數(shù)值;
(2)試確定拋物線的解析式.
【答案】(1),8;(2)
【解析】
(1)根據(jù)拋物線的對稱性質(zhì)求得對稱軸方程,由圖象的對稱性質(zhì)知當(dāng)與x=2時(shí)所對應(yīng)的函數(shù)值相等.
(2)設(shè)拋物線解析式為y=a(x+2)(x-1)(a≠0),將點(diǎn)(0,-4)代入求得a的值,然后將該拋物線解析式轉(zhuǎn)化為一般式即可.
解:(1)由圖表中的數(shù)據(jù)知,當(dāng)x=-1與x=0所對應(yīng)的函數(shù)值相等,
則其對稱軸方程:;
由圖象的對稱性質(zhì)知當(dāng)與x=2時(shí)所對應(yīng)的函數(shù)值相等,
即當(dāng)時(shí)對應(yīng)的函數(shù)值是8;
(2)根據(jù)表格中的數(shù)據(jù)知,拋物線與x軸的兩交點(diǎn)坐標(biāo)是(-2,0)、(1,0),
故設(shè)拋物線解析式為y=a(x+2)(x-1)(a≠0),
將點(diǎn)(0,-4)代入,得a(0+2)(0-1)=-4
解得:a=2,
∴該拋物線解析式是:y=2(x+2)(x-1)=2x2+2x-4,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)B的坐標(biāo)為(6,8),動點(diǎn)D、E分別從點(diǎn)B、A同時(shí)出發(fā),沿射線BA運(yùn)動,點(diǎn)D、E的運(yùn)動速度均為每秒2個(gè)單位,設(shè)D、E的運(yùn)動時(shí)間為t秒.連接OD、CE交于點(diǎn)F.
(1)如圖1,求點(diǎn)F的縱坐標(biāo);
(2)若點(diǎn)G為OA的中點(diǎn),在點(diǎn)D、E運(yùn)動過程中,設(shè)△GEF的面積為y,求y與t的關(guān)系式;
(3)在(2)的條件下,連接BG,線段BG、OD交于點(diǎn)K,若,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以D、E、K、M為頂點(diǎn)的四邊形為平行四邊形,如果存在,請求出點(diǎn)M的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時(shí),以高出進(jìn)價(jià)的50%標(biāo)價(jià).已知按標(biāo)價(jià)九折銷售該型號自行車8輛與將標(biāo)價(jià)直降100元銷售7輛獲利相同.
(1)求該型號自行車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少元?
(2)若該型號自行車的進(jìn)價(jià)不變,按(1)中的標(biāo)價(jià)出售,該店平均每月可售出51輛;若每輛自行車每降價(jià)20元,每月可多售出3輛,求該型號自行車降價(jià)多少元時(shí),每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD,DEFG都是正方形,邊長分別為m,n(m<n).坐標(biāo)原點(diǎn)O為AD的中點(diǎn),A,D,E在y軸上,若二次函數(shù)y=ax2的圖象過C,F兩點(diǎn),則=( 。
A.+1B.+1C.2﹣1D.2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=kx+m的圖象經(jīng)過二次函數(shù)y=ax2+bx+c的頂點(diǎn),我們則稱這兩個(gè)函數(shù)為“丘比特函數(shù)組”
(1)請判斷一次函數(shù)y=﹣3x+5和二次函數(shù)y=x2﹣4x+5是否為“丘比特函數(shù)組”,并說明理由.
(2)若一次函數(shù)y=x+2和二次函數(shù)y=ax2+bx+c為“丘比特函數(shù)組”,已知二次函數(shù)y=ax2+bx+c頂點(diǎn)在二次函數(shù)y=2x2﹣3x﹣4圖象上并且二次函數(shù)y=ax2+bx+c經(jīng)過一次函數(shù)y=x+2與y軸的交點(diǎn),求二次函數(shù)y=ax2+bx+c的解析式;
(3)當(dāng)﹣3≤x≤﹣1時(shí),二次函數(shù)y=x2﹣2x﹣4的最小值為a,若“丘比特函數(shù)組”中的一次函數(shù)y=2x+3和二次函數(shù)y=ax2+bx+c(b、c為參數(shù))相交于PQ兩點(diǎn)請問PQ的長度為定值嗎?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017江蘇省連云港市)如圖,已知等邊三角形OAB與反比例函數(shù)(k>0,x>0)的圖象交于A、B兩點(diǎn),將△OAB沿直線OB翻折,得到△OCB,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)C,線段CB交x軸于點(diǎn)D,則的值為____.(已知sin15°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
如圖,點(diǎn)E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整,并解決相關(guān)問題:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應(yīng)值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值為________________;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出函數(shù)的大致圖象;
(4)結(jié)合函數(shù)圖象,請寫出函數(shù)的一條性質(zhì):______________________.
(5)解決問題:如果函數(shù)與直線y=a的交點(diǎn)有2個(gè),那么a的取值范圍是______________ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com